■ある無限級数(その64)
θ3(z)の定義は,
θ3(z)=Σq^(n^2)y^(2n)
=1+2Σq^(n^2)
=1+2q^+2q^4+2q^9+・・・
と表されます.
θ4(z)=Σ(-1)^nq^(n^2)
=1+2Σ(-1)^nq^(n^2)
=1−2q^+2q^4−2q^9+・・・
θ2(z)=Σq^((n+1/2)^2)
=2Σq^((n+1/2)^2)
=2q^1/4+2q^9/4+2q^25/4+・・・
=2q^1/4(1+q^2+q^6+q^12+q^20+・・・)
θ1’(z)=Σ(-1)^n(2n+1)q^((n+1/2)^2)
=2q^1/4−6q^9/4+10q^25/4−14q^49/4+・・・
=2q^1/4(1−3q^2+5q^6−7q^12+9q^20+・・・)
===================================