■n次元平行多面体数(その118)
[1]n=4
[1,cosπ/4,cos2π/4,cos3π/4]
[0,sinπ/4,sin2π/4,sin3π/4]
[1,cos3π/4,cos6π/4,cos9π/4]
[0,sin3π/4,sin6π/4,sin9π/4]
から2次元平面上の8点(正8角形)を決定する.
[2]n=6
[1,cosπ/6,cos2π/6,cos3π/6,cos4π/6,cos5π/6]
[0,sinπ/6,sin2π/6,sin3π/6,sin4π/6,sin5π/6]
[1,cos3π/6,cos6π/6,cos9π/6,cos12π/6,cos15π/6]
[0,sin3π/6,sin6π/6,sin9π/6,sin12π/6,sin15π/6]
[1,cos5π/6,cos10π/6,cos15π/6,cos20π/6,cos25π/6u]
[0,sin5π/6,sin10π/6,sin15π/6,sin20π/6,sin25π/6]
ではなく,
[1,1,0,0,τ,−τ]
[τ,−τ,1,1,0,0]
[0,0,τ,−τ,1,1]
[τ,τ,0,0,−1,0]
[−1,1,τ,τ,0,0]
[0,0,1,−1,τ,τ]
×√1/τ(τ+2)
から3次元空間上の菱形12面体の頂点を決定するようだ.
===================================