■n次元平行多面体数(その94)

[1]n=2

[1,cosπ/2]=[1,0]

[0,sinπ/2] [0,1]

(2/2)^1/2をかける.

[2]n=3

[1,cos2π/3,cos4π/3] [1,−1/2,−1/2]

[0,sin2π/3,sin4π/3]=[0,√3/2,−√3/2]

[1/√2,1/√2,1/√2]    [1/√2,1/√2,1/√2]

(2/3)^1/2をかける.

 [√(2/3),−√(1/6),−√(1/6)]

=[0,1/√2,−1/√2]

 [1/√3,1/√3,1/√3]

===================================