■ピラミッドの傾斜角
黄金菱形の頂角は
2arctanx=arctan(2x/(1−x^2))
において,x=1/τとおくと,右辺はarctan2となる.すなわち,arctan2.
それではピラミッドの傾斜角を求めてみよう.
===================================
底面の正方形面と斜面となる三角形面の辺の長さが等しいとして,基本的な三角法により
arctan√2=54°44′
これは実測値に近い値であるという.このとき,底面の対角線に沿ってピラミッドを二等分してできた切断面は二等辺三角形になるが,その頂角は90°,すなわち,直角二等辺三角形になっていることに注意されたい.
同様に,正四面体の傾斜角は
arctan2√2
になる.
===================================