■fベクトルの見積もり(その2)
[例]空間充填2(2^n−1)胞体の面数はデーン・サマービル関係式を満たす.
2次元:(f0,f1)=(6,6)
3次元:(f0,f1,f2)=(24,36,14)
4次元:(f0,f1,f2,f3)=(120,240,150,30)
5次元:(f0,f1,f2,f3,f4)=(720,1800,1560,540,62)
6次元:(f0,f1,f2,f3,f4,f5)=(5040,15120,16800,8400,1806,126)
[例]3^n−1胞体の面数はデーン・サマービル関係式を満たす.
2次元:(f0,f1)=(8,8)
3次元:(f0,f1,f2)=(48,72,26)
4次元:(f0,f1,f2,f3)=(384,768,464,80)
5次元:(f0,f1,f2,f3,f4)=(3840,9600,8160,2640,242)
6次元:(f0,f1,f2,f3,f4,f5)=(46080,138240,151680,72960,14168,728)
(その1)では,fkの最大を2f0と仮定したが,もっとうまく見積もれないだろうか?
===================================
【1】デーン・サマービル関係式
各頂点がn本の辺上にあるn価のn次多面体(単純多面体)に対しては,デーン・サマービル関係式
fk=Σ(0,k)(−1)^j(n−j,n−k)fj
が成り立つ.
k次元面はn−k個のファセットの共通部分に含まれる,残りのn−j個のファセット上のあるものを引いて,引き過ぎた分を足し直してということを繰り返した包除公式である.
単純n次多面体に対して,与えられたj次面を含むk次面の数は(n−j,n−k)になる.k=nのときがオイラー関係式
fn=Σ(0,n)(−1)^jfj
であるが,オイラー関係式は単純多面体だけでなく任意の多面体に対して成り立つ.
デーンは1905年に5次元においてこの関係式を証明した.およそ20年後の1927年,サマービルが一般の場合を証明した.
===================================
[雑感]単純多面体に対するデーン・サマービル関係式は,単純多面体であることの検算には役立ったが,単純多面体を構成するのには無効だった.
===================================