■ルジャンドル予想とオッパーマン予想(その1)

 ポリニヤック予想は(p,p+2),(p,p+4),(p,p+6),・・・が無限個存在するというものである.

 ルジャンドル予想とは,n^2と(n+1)^2の間には少なくともひとつの素数が存在するだろうというものである.

===================================

 この予想はいまだに解けたわけではないが,n^2と(n+1)^2の間には少なくとも2つの素数が存在するだろうというオッパーマン予想(1882年)というものもある.

 n^2と(n+1)^2の間にある素数の個数は

2(n=1),2(n=2),2(n=3),3(n=4),2(n=5),4(n=6),3(n=7),4(n=8),・・・

 オッパーマン予想は,n(n−1)とn^2の間に素数が少なくともひとつ,n^2とn(n+1)の間に素数が少なくともひとつ存在するという表現もあるようだ.

===================================