■非周期模様(その15)
正細胞体のk次元面数fkろ二面角は
[1]正単体→Σfkx^k={(x+1)^n+1−1}/x
δ=arccos1/n
[2]超立方体→Σfkx^k=(x+2)^n
δ=π/2
[3]正軸体→Σfkx^k={(2x+1)^n−1}/x
δ=arccos(−(n−2)/n)
で与えられる.
{3,3,3}の二胞角はarccos(1/4)であるが,{3,3,5}の二胞角は240°−arccos(1/4)で与えられる.
すなわち,
α4+β4+δ4=2π
δ4=2π−α4−β4=240°−arccos(1/4)
===================================