■三角関数の積分(その5)
[Q]∫sin x/(sin x + cos x)dxは?
===================================
t=tan(θ/2)とすると
tan(θ/2)=sinθ/(1+cosθ)=(1−cosθ)/sinθ,
cosθ=(1−t^2)/(1+t^2),
sinθ=2t/(1+t^2),
dθ/dt=2/(1+t^2)
∫sin x/(sin x + cos x)dx=∫4t/(1+2t−t^2)(1+t^2)dt
ここで,
4t/(1+2t−t^2)(1+t^2)=1/(1+2t−t^2)+(1/1+t^2)=(t−1)/(1+2t−t^2)+(t+1)/(1+t^2)
=(t−1)/(1+2t−t^2)+t/(1+t^2)+1/(1+t^2)
より
∫sin x/(sin x + cos x)dx=−1/2・log|1+2t−t^2|+1/2log|1+t^2|+arctan|t|+C,t=tan(x/2)
もっと簡単にできるかもしれないが,この辺で止めておく.
===================================