■n次元平行多面体数(その22)
[1]ゾーン多面体
平行多角形のみで構成される多面体をゾーン多面体といいます.ゾーン多面体は無数にあるのですが,そのうち,ゾーン面は2枚ずつ増やせるので2(n−1)面,天井面と床面はそれぞれ(n−1)(n−2)/2面で
2(n−1)+2(n−1)(n−2)/2=n(n−1)
という構成になっています.
f=n(n−1)=2,6,12,20,30,42,56,・・・
e=2n(n−1)
v=n(n−1)+2
n ゾーン 天井床 f e v
3 4 2 6 12 8
4 6 6 12 24 14
5 8 12 20 40 22
6 10 20 30 60 32
===================================
[まとめ]この観点からは,n次元立方体から(n+1,2)次元立方体の射影であったとしても,面数が2(2^n−1)を超えるゾーン多面体は空間充填不可能と考えられます.
===================================