■黄金比と白銀比(その4)

【1】もうひとつの白銀比

[Q]長方形から正方形を2つ切り取った後に残る長方形がもとの長方形と相似になるのは?

[A]1:x=x−2:1 → x=1+√2

[Q]長方形から正方形をn個切り取った後に残る長方形がもとの長方形と相似になるのは?

[A]1:x=x−n:1 → x=(n+√(n^2+4))/2

 これは黄金比のもうひとつの一般化であるが,この操作は無限連分数

  (n+√(n^2+4))/2=[n:n,n,n,,n,・・・]

で表されることと同義である.

  φ=[1:1,1,1,,1,・・・]

  1+√2=[2:2,2,2,2,・・・]

  (3+√13)/2=[3:3,3,3,3,・・・]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 「白銀比」は黄金比のある種の一般化である,周期長さ1をもつ周期的連分数として表すことのできる数として定義される.

  τ+/-N=N±1/τ+/-N → x^2−Nx±1=0

より

  τ+1=1+1/τ+1→t+1=φ

  τ+2=2+1/τ+2→t+2=1+√2

  τ-4=−4+1/τ-4→t-4=2+√3

===================================