■パラメータ解? (その26)
【1】実2次体の基本単数
Q(√m)を2次体とするとき,a+b√mの共役をa−b√mで表します(m<0ならば通常の複素共役である).このとき,その標準底は
ω=√m m=2,3(mod4)
ω=(1+√m)/2 m=1(mod4)
で与えられます.
そして,単位元「1」の約数を単数といいます.m>0のとき,単数群は
{±1}×C(Cは乗法的巡回群)
によって与えられます.また,εをε>1なる最小の単数とするとき,
C={±ε^n}
と表すことができ,εをQ(√m)の基本単数といいます.
このようなεのとり方は4通りあるのですが,その中でε>1なるものは1通りですから,実2次体の基本単数は一意に定まります.Q(√m)を実2次体とすると,
[a]m=2,3(mod4)のとき
基本単数を
ε=a+b√m
とすると
ε~=a−b√m
εが単数←→εε~=a^2−mb^2=±1
また,
ε^n=an+bn√m
と書くと
ε^(n+1)=ε・ε^n=(a+b√m)(an+bn√m)
=aan+bbnm+(abn+ban)√m
これより
an+1=aan+bbnm
bn+1=abn+ban
このことから0<a1<a2<・・・,0<b1<b2<・・・となるのですが,より,a,bはペル方程式:
a^2−mb^2=±1
の解の中で(a,b)が最小なものとして与えられます.ペル方程式の自明な解(a=±1,b=0)には単数±1が,自明でない解のなかで絶対値|a|または|b|が最小なものには基本単数が対応するというわけです.
Q(√2),Q(√3),Q(√6),Q(√7)の基本単数を求めると,それぞれ,
x^2−2y^2=±1,複号は−1で(1,1)が最小→ε=1+√2
x^2−3y^2=±1,複号は+1で(2,1)が最小→ε=2+√3
x^2−6y^2=±1,複号は+1で(5,2)が最小→ε=5+2√6
x^2−7y^2=±1,複号は+1で(8,3)が最小→ε=8+3√7
[b]m=1(mod4)のとき
基本単数を
ε=(a+b√m)/2 a=b(mod2)
と書けば
a^2−mb^2=±4
となること以外は前と同様です.
Q(√5),Q(√13)の基本単数を求めると,それぞれ,
x^2−5y^2=±4,複号は−4で(1,1)が最小→ε=(1+√5)/2
x^2−13y^2=±4,複号は−4で(3,1)が最小→ε=(3+√13)/2
===================================