■ブレットシュナイダーの公式(その12)
(その8)の修正.
4S^2=−1/4・(a^2+b^2−c^2−d^2)^2+(ab+cd)^2−4abcdcos^2θ←
=−(a^2+b^2)^2/4−(c^2+d^2)^2/4+(a^2+b^2)(c^2+d^2)/2+(ab+cd)^2−4abcdcos^2θ
=−(a^4+b^4+c^4+d^4)/4−(a^2b^2+c^2d^2)/2+(a^2+b^2)(c^2+d^2)/2+(ab+cd)^2−4abcdcos^2θ
16S^2=−(a^4+b^4+c^4+d^4)−2(a^2b^2+c^2d^2)+2(a^2+b^2)(c^2+d^2)+4(ab+cd)^2−16abcdcos^2θ
ここで,16S^2+16abcdcos^2θ=16(s−a)(s−b)(s−c)(s−d)=△
とおきます.
△=−(a^4+b^4+c^4+d^4)+2a^2b^2+2c^2d^2+2a^2c^2+2a^2d^2+2b^2c^2+2b^2d^2+8abcd
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4S^2=−1/4・(b^2+c^2−a^2−d^2)^2+(ad+bc)^2−4abcdcos^2θ
=−(b^2+c^2)^2/4−(a^2+d^2)^2/4+(b^2+c^2)(a^2+d^2)/2+(ad+bc)^2−4abcdcos^2θ
=−(a^4+b^4+c^4+d^4)/4−(b^2c^2+a^2d^2)/2+(b^2+c^2)(a^2+d^2)/2+(ad+bc)^2−4abcdcos^2θ
16S^2=−(a^4+b^4+c^4+d^4)−2(b^2c^2+a^2d^2)+2(b^2+c^2)(a^2+d^2)+4(ad+bc)^2−16abcdcos^2θ
ここで,16S^2+16abcdcos^2θ=16(s−a)(s−b)(s−c)(s−d)=△
とおきます.
△=−(a^4+b^4+c^4+d^4)+2b^2c^2+2a^2d^2+2a^2b^2+2b^2d^2+2a^2c^2+2c^2d^2+8abcd
===================================