■ブレットシュナイダーの公式(その8)
(その7)の続き.
4S^2=−1/4・(a^2+b^2−c^2−d^2)^2+(ab+cd)^2+(a^2+b^2−d1^2)(c^2+d^2−d1^2)/2−4abcdcos^2θ
=−(a^2+b^2)^2/4−(c^2+d^2)^2/4+(a^2+b^2)(c^2+d^2)+(ab+cd)^2+d1^4/2−d1^2(a^2+b^2+c^2+d^2)/2−4abcdcos^2θ
=−(a^4+b^4+c^4+d^4)/4−(a^2b^2+c^2d^2)/2+(a^2+b^2)(c^2+d^2)+(ab+cd)^2+d1^4/2−d1^2(a^2+b^2+c^2+d^2)/2−4abcdcos^2θ
16S^2=−(a^4+b^4+c^4+d^4)−2(a^2b^2+c^2d^2)+4(a^2+b^2)(c^2+d^2)+4(ab+cd)^2+2d1^4−2d1^2(a^2+b^2+c^2+d^2)−16abcdcos^2θ
ここで,16S^2+16abcdcos^2θ=16(s−a)(s−b)(s−c)(s−d)=△
とおきます.
△=−(a^4+b^4+c^4+d^4)+2a^2b^2+2c^2d^2+4a^2c^2+4a^2d^2+4b^2c^2+4b^2d^2+8abcd+2d1^4−2d1^2(a^2+b^2+c^2+d^2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4S^2=−1/4・(b^2+c^2−a^2−d^2)^2+(ad+bc)^2+(b^2+c^2−d2^2)(d^2+a^2−d2^2)/2−4abcdcos^2θ
=−(b^2+c^2)^2/4−(a^2+d^2)^2/4+(b^2+c^2)(a^2+d^2)+(ad+bc)^2+d2^4/2−d2^2(b^2+c^2+a^2+d^2)/2−4abcdcos^2θ
=−(a^4+b^4+c^4+d^4)/4−(b^2c^2+a^2d^2)/2+(b^2+c^2)(a^2+d^2)+(ad+bc)^2+d2^4/2−d2^2(b^2+c^2+a^2+d^2)/2−4abcdcos^2θ
16S^2=−(a^4+b^4+c^4+d^4)−2(b^2c^2+a^2d^2)+4(b^2+c^2)(a^2+d^2)+4(ad+bc)^2+2d2^4−2d2^2(b^2+c^2+a^2+d^2)−16abcdcos^2θ
ここで,16S^2+16abcdcos^2θ=16(s−a)(s−b)(s−c)(s−d)=△
とおきます.
△=−(a^4+b^4+c^4+d^4)+2b^2c^2+2a^2d^2+4a^2b^2+4b^2d^2+4a^2c^2+4c^2d^2+8abcd+2d2^4−2d2^2(b^2+c^2+a^2+d^2)
===================================