■ブレットシュナイダーの公式(その7)

 もう一度,円に内接しない場合を考えてみたい.

  S=1/2・d1d2sinφ

  S=((s−a)(s−b)(s−c)(s−d)−abcdcos^2θ)^1/2

  d1^2=a^2+b^2−2abcosα=c^2+d^2−2cdcosγ

  d2^2=b^2+c^2−2bccosβ=d^2+a^2−2dacosδ

  α+β+γ+δ=2π

  (β+δ)/2=θ,(α+γ)/2=π−θ

  cosα=(a^2+b^2−d1^2)/2ab

  cosγ=(c^2+d^2−d1^2)/2cd

  cosβ=(b^2+c^2−d2^2)/2bc

  cosδ=(d^2+a^2−d2^2)/2da

cosαcosγ=(a^2+b^2−d1^2)(c^2+d^2−d1^2)/4abcd

cosβcosδ=(b^2+c^2−d2^2)(d^2+a^2−d2^2)/4abcd

  S=1/2・absinα+1/2・cdsinγ

  S=1/2・bcsinβ+1/2・dasinδ

 sinφをa,b,c,d,S(θ)を使って表現できるだろうか?

===================================

  4a^2b^2sin^2α=4a^2b^2−(a^2+b^2−d1^2)

  4c^2d^2sin^2γ=4c^2d^2−(c^2+d^2−d1^2)

  S=1/2・absinα+1/2・cdsinγ

  S^2=1/4{a^2b^2sin^2α+2abcdsinαsinγ+c^2d^2sin^2γ}

=1/4{a^2b^2(1−cos^2α)+2abcdsinαsinγ+c^2d^2(1−cos^2γ)}

cos(α+γ)=cosαcosγ−sinαsinγ

=cos(β+δ)=cos2θ=2cos^2θ−1

sinαsinγ=cosαcosγ−cos2θ

S^2=1/4{a^2b^2(1−cos^2α)+2abcd(cosαcosγ+1−2cos^2θ)+c^2d^2(1−cos^2γ)}

=1/4{−(abcosα−cdcosγ)^2+(ab+cd)^2+2abcd(cosαcosγ−2cos^2θ)}

abcosα−cdcosγ=(a^2+b^2−d1^2)/2−(c^2+d^2−d1^2)/2=1/2・(a^2+b^2−c^2−d^2)

2abcdcosαcosγ=(a^2+b^2−d1^2)(c^2+d^2−d1^2)/2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  S=1/2・bcsinβ+1/2・dasinδ

  S^2=1/4{b^2c^2sin^2β+2abcdsinβsinδ+a^2d^2sin^2δ}

=1/4{b^2c^2(1−cos^2β)+2abcdsinβsinδ+a^2d^2(1−cos^2δ)}

cos(β+δ)=cosβcosδ−sinβsinδ

=cos(α+γ)=cos2θ=2cos^2θ−1

sinβsinδ=cosβcosδ−cos2θ

S^2=1/4{b^2c^2(1−cos^2β)+2abcd(cosβcosδ+1−2cos^2θ)+a^2d^2(1−cos^2δ)}

=1/4{−(bccosβ−adcosδ)^2+(ad+bc)^2+2abcd(cosβcosδ−2cos^2θ)}

bccosβ−adcosδ=(b^2+c^2−d2^2)/2−(d^2+a^2−d2^2)/2=1/2・(b^2+c^2−a^2−d^2)

2abcdcosβcosδ=(b^2+c^2−d2^2)(d^2+a^2−d2^2)/2

===================================