■パラメータ解? (その3)

 親和数に関するパラメータ解を紹介したい.

===================================

【1】イブン・クッラの公式

  p=3・2^n-1−1

  q=2p+1

  r=pq+p+q

がすべて素数ならば,M=2^npq,N=2^nrのペアは親和数になる.

  n=2→(220,284)

  n=4→(17296,18416)   (フェルマー)

  n=7→(9363584,9437056)   (デカルト)

なお,この公式で小さい方は四面体数になる.

 この公式ですべての親和数を求められるわけにはない.その組み合わせのひとつにすぎないのである.(1184,1210)は2番目に小さい親和数,(2620,2924)は3番目の親和数,(5020,5564)は4番目の親和数であるが,この公式では見つけられない.

 (12285,14595),(1175265,1438983)は奇数の親和数.

===================================