■パスカルの三角形の概3等分(その15)

 (その14)を並び替える.

===================================

[1]k=1,m=4

1/4・{2^n+(2cosπ/4)^ncos(n−2)π/4+(2cos3π/4)^ncos3(n−2)π/4}

 cosnπ/4+(−1)^ncos3nπ/4

は,n−2が偶数のとき

=−2cosnπ/2・cosnπ/4

n=4m+2のとき,−2cosmπ

n=4mのとき,2cos(m+1/2)π=−2sinmπ

n−2が奇数のとき

=−2sinnπ/2・sinnπ/4

n=4m+3のとき,−2sin(m+1/4)π

n=4m+1のとき,2sin(m+3/4)π=2cos(m+1/4)π

===================================

[2]k=2,m=4

1/4・{2^n+(2cosπ/4)^ncos(n−4)π/4+(2cos3π/4)^ncos3(n−4)π/4}

 cosnπ/4+(−1)^ncos3nπ/4

は,n−4が偶数のとき

=−2cosnπ/2・cosnπ/4

n=4mのとき,−2cosmπ

n=4m+2のとき,2cos(m+1/2)π=−2sinmπ

n−4が奇数のとき

=−2sinnπ/2・sinnπ/4

n=4m+1のとき,−2sin(m+1/4)π

n=4m+3のとき,2sin(m+3/4)π=2cos(m+1/4)π

===================================

[3]k=3,m=4

1/4・{2^n+(2cosπ/4)^ncos(n−6)π/4+(2cos3π/4)^ncos3(n−6)π/4}

 cosnπ/4+(−1)^ncos3nπ/4

は,n−6が偶数のとき

=−2cosnπ/2・cosnπ/4

n=4m+2のとき,−2cosmπ

n=4mのとき,2cos(m+1/2)π=−2sinmπ

n−4が奇数のとき

=−2sinnπ/2・sinnπ/4

n=4m+3のとき,−2sin(m+1/4)π

n=4m+1のとき,2sin(m+3/4)π=2cos(m+1/4)π

===================================