■パスカルの三角形の概3等分(その12)

  (n,k)+(n,m+k)+(n,2m+k)+・・・=1/m・Σ(2cosjπ/m)^n・cos(j(n−2k)π/m)

0≦j<m

===================================

[1]k=1,m=3

1/3・{2^n+(2cosπ/3)^ncos(n−2)π/3+(2cos2π/3)^ncos2(n−2)π/3}

=1/3・{2^n+cos(n−2)π/3+(−1)^ncos2(n−2)π/3}

cos(n−2)π/3+(−1)^ncos2(n−2)π/3}

cosnπ/3+(−1)^ncos2nπ/3=2cosnπ/3

のnがn−2に変わっただけであるから,

  (n,1)+(n,4)+(n,7)+・・・=(2^n+2cos((n−2)π/3))/3

[2]k=2,m=3

 同様に,

  (n,2)+(n,5)+(n,8)+・・・=(2^n+2cos((n−4)π/3))/3

===================================