■正三角形の等チェバ線(その15)
{3y^2−(x−1)^2}(2x+1)
=2K(12y^2−4(x^2+4x+4)}(x−1)/9√3
=8K(3y^2−2(x+2)^2}(x−1)/9√3
3y^2(2x+1)−(x−1)^2(2x+1)
=24K(x−1)/9√3・y^2−16K(x−1)/9√3
y^2{2x+1−24K(x−1)/9√3}
=(x−1)^2(2x+1)−16K(x−1)/9√3
=(x−1){2x^2−x−1−16K/9√3}
===================================
[まとめ]どうしても因子x^2(x^2−xy+y^2)をもつ形にはならないようだ.
===================================