■正三角形の等チェバ線(その15)

{3y^2−(x−1)^2}(2x+1)

=2K(12y^2−4(x^2+4x+4)}(x−1)/9√3

=8K(3y^2−2(x+2)^2}(x−1)/9√3

3y^2(2x+1)−(x−1)^2(2x+1)

=24K(x−1)/9√3・y^2−16K(x−1)/9√3

y^2{2x+1−24K(x−1)/9√3}

=(x−1)^2(2x+1)−16K(x−1)/9√3

=(x−1){2x^2−x−1−16K/9√3}

===================================

[まとめ]どうしても因子x^2(x^2−xy+y^2)をもつ形にはならないようだ.

===================================