■正三角形の等チェバ線(その8)
a−1/4=(2√3xy−9x/2−√3y/2)/(2√3y−2x−4)
={2√3y(x−1/4)−9x/2}/(2√3y−2x−4)
c−1/4=(2√3xy+9x/2−√3y/2)/(2√3y+2x+4)
={2√3y(x−1/4)+9x/2}/(2√3y+2x+4)
(a−1/4)(c−1/4)={2√3y(x−1/4)−9x/2}{2√3y(x−1/4)+9x/2}/(2√3y−2x−4)(2√3y+2x+4)
={12y^2(x−1/4)^2−81x^2/4}/{12y^2−4x^2−16x−16}
(a−1/4)^2+(c−1/4)^2
={2√3y(x−1/4)−9x/2}^2/(2√3y−2x−4)^2
+{2√3y(x−1/4)+9x/2}^2/(2√3y+2x+4)^2
={{2√3y(x−1/4)−9x/2}^2(2√3y+2x+4)^2+
{2√3y(x−1/4)+9x/2}^2(2√3y−2x−4)^2}/{12y^2−4x^2−16x−16}^2
=2・{2√3y(x−1/4)2√3y+9x/2・2√3y(x−1/4)}^2+2{2√3y(x−1/4)(2x+4)+9x/2・2√3y}^2
/{12y^2−4x^2−16x−16}^2
これ以上計算しないが,方針だけは示せたと思う.
===================================