■シンク積分とフレネル積分(その5)
(その4)では,素数をわたる無限積(オイラー積)
Πp^2/(p^2−1)=4/3・9/8・25/24・49/48・・・
=Π1/(1−1/p^2)=π^2/6=ζ(2)
が成り立つことを紹介した.
無限等比級数に展開すると
Π1/(1−1/p^2)=Π(1+1/p^2+1/p^4+・・・)
右辺の無限和の無限積をみていかめしい感じがするが,ここでリーマンのゼータ関数を思い出せば
ζ(k)=Σ1/n^k=Π1/(1−1/p^k)
したがって,すべての平方数の逆数1/n^2にほかならず,各平方数はちょうど1回現れる.
Π1/(1−1/p^2)=Π(1+1/p^2+1/p^4+・・・)
=Σ1/n^2=ζ(2)=π^2/6
===================================
ついでながら,すべての素数をわたる無限積
Π(p^2+1)/(p^2−1)=5/3・10/8・26/24・50/48・・・=5/2
が成り立つ.
(証)
Π(p^2+1)/(p^2−1)=Π(p^4−1)/(p^2−1)^2=Π(1−1/p^4)/(1−1/p^2)^2
等比級数に展開すると
Π(1−1/p^4)/(1−1/p^2)^2=Π(1+1/p^2+1/p^4+・・・)^2/Π(1+1/p^4+1/p^8+・・・)=(Σ1/n^2)^2/(Σ1/n^4)
Σ1/n^2=ζ(2)=π^2/6,Σ1/n^4=ζ(4)=π^4/90
より
Π(p^2+1)/(p^2−1)=(π^4/36)/(π^4/90)=5/2
===================================