■詐欺等比数列(その3)
数列
{Mn}={1,2,4,8,16,31,57,99,163,・・・}
をこの問題を提起したモーザーにちなんでモーザー数列と呼ぶことにすると,モーザー数列は先入観から間違った答えを予想してしまう例としてしばしば引き合いにだされるものになっています.
等比数列(指数関数)でなく,多項式数列(代数関数)であったというわけです.
===================================
【1】数列の次の項を予想する
カタラン数列{Cn}もその一例として挙げておきましょう.カタラン数列では
{Cn}={1,2,5,14,42,132,429,1430,4862,16796,・・・}
のはじめの4項1,2,5,14は初項1から始まって前項を3倍して1を引いたものに一致するのですが,5項目以降は異なってしまいます.
カタラン数は,凸n角形を対角線で三角形分割する仕方は何通りあるかとか,n対のかみ合い括弧の種類数などいろいろな場面で登場する数なのですが,
Cn=2nCn/(n+1)=(2n)!/n!(n+1)!,
Cn=2n+1Cn/(2n+1),
あるいは
Cn=2nCn−2nCn-1=1,2,5,14,42,・・・
と表されます.
カタラン数から一般項が何かを予想するのは難しいのですが,ここでは
Cn=2nCn/(n+1) (C0=1)
がわかっているものとして,母関数
F(t)=ΣCnt^n
を求めてみます.
この級数は,第0項:C0=1から始まるので,そのまま項比をとると
an+1xn+1/anxn=(n+1/2)(n+1)/(n+2)*4x/(n+1)
したがって,
F(x)=2F1(1/2,1,2,4x)=2/{1+(1-4x)^(1/2)}
={1-(1-4x)^(1/2)}/2x
(1-4x)^(1/2)=Σ(-4)^k1/2Ck・x^k
より
Cn=-1/2(-4)^(n+1)1/2C(n+1)
これをさらに式変形すれば,
Cn=2nCn/(n+1)
になる.この結果,二項展開を丹念に使えば
{1-(1-4x)^(1/2)}/2x=Σ2nCnx^n/(n+1)
が得られるはず・・・.
この方法は試してはいないのですが,かなり面倒そうです.実はカタラン数に対しては,漸化式
Cn=ΣCkCn-k-1=C0Cn-1+C1Cn-2+・・・+Cn-1C0
が成り立つので,母関数は
F(t)=ΣCnt^n=ΣCkt^kΣCn-k-1t^n-k+1
=F(t)・tF(t)+1
すなわち,
tF(t)^2−F(t)−1=0
なる2次方程式を満たすことが知られています.
C0=1を満足させなければならないので,複号は負号をとると,
F(t)={1-(1-4x)^(1/2)}/2x
がでてくることを付記しておきたいと思います.
===================================