■置換多面体の空間充填性(その462)
4次元正単体の続きである.
===================================
[5]{3,3}(1100)
{3,3}(100)→(4,6,4,1),5個
{}(00)×{}(1)→(1000),10個
{}(0)×{3}(11)→(1000),10個
{3,3}(110)→(1000),5個
20
30,10
20,0,10
5,0,0,5
1列目より正三角形20,3列目より正六角形10
1列目より四面体5,4列目より{3,3}(110)5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[6]{3,3}(1010)
{3,3}(010)→(6,12,8,1),5個
{}(10)×{}(1)→(3,3,1,0),10個
{}(0)×{3}(10)→(1000),10個
{3,3}(101)→(1000),5個
30
60,30
40,30,10
5,10,0,5
1列目より正三角形40,2列目より正方形30,3列目より正三角形10 1列目より八面体5,2列目より三角柱10,4列目より{3,3}(101)5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[7]{3,3}(1001)
{3,3}(001)→(4,6,4,1),5個
{}(01)×{}(1)→(3,3,1,0),10個
{}(1)×{3}(10)→(2100),10個
{3,3}(100)→(1000),5個
20
30,30
20,30,20
5,10,10,5
1列目:正三角形40
2列目:正方形30
3列目:正三角形20
1列目:四面体5
2列目:三角柱10
3列目:三角柱10
4列目:四面体5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[8]{3,3}(0110)
{3,3}(110)→(12,18,8,1),5個
{}(10)×{}(0)→(3,3,1,0),10個
{}(0)×{3}(01)→(1000),10個
{3,3}(011)→(1000),5個
60,−30
90,−30
40,−10,10
5,0,0,5
1列目:正三角形20,正六角形20
2列目:正三角形−10
3列目:正三角形10
1列目:{33}(110)5
4列目:{33}(011)5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[9]{3,3}(0101)
{3,3}(101)→(12,24,14,1),5個
{}(01)×{}(0)→(3,3,1,0),10個
{}(1)×{3}(01)→(2100),10個
{3,3}(010)→(1000),5個
60,−30
120,−30
70,−10,20
5,0,10,5
1列目:正三角形40,正方形30
2列目:正三角形−10
3列目:正三角形10
1列目:{33}(101)5
3列目:三角柱10
4列目:{33}(010)5→[6]と一致
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[10]{3,3}(0011)
{3,3}(011)→(12,18,8,1),5個
{}(11)×{}(0)→(6,6,1,0),10個
{}(1)×{3}(00)→(2100),10個
{3,3}(001)→(1000),5個
60,−60,20
90,−60,10
40,−10,0
5,0,0,5
1列目:正三角形20,正六角形20
2列目:正六形−10
1列目:{33}(011)5
4列目:四面体5→[5]と一致
===================================