■置換多面体の空間充填性(その462)

 4次元正単体の続きである.

===================================

[5]{3,3}(1100)

  {3,3}(100)→(4,6,4,1),5個

  {}(00)×{}(1)→(1000),10個

  {}(0)×{3}(11)→(1000),10個

  {3,3}(110)→(1000),5個

20

30,10

20,0,10

5,0,0,5

 1列目より正三角形20,3列目より正六角形10

 1列目より四面体5,4列目より{3,3}(110)5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[6]{3,3}(1010)

  {3,3}(010)→(6,12,8,1),5個

  {}(10)×{}(1)→(3,3,1,0),10個

  {}(0)×{3}(10)→(1000),10個

  {3,3}(101)→(1000),5個

30

60,30

40,30,10

5,10,0,5

 1列目より正三角形40,2列目より正方形30,3列目より正三角形10 1列目より八面体5,2列目より三角柱10,4列目より{3,3}(101)5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[7]{3,3}(1001)

  {3,3}(001)→(4,6,4,1),5個

  {}(01)×{}(1)→(3,3,1,0),10個

  {}(1)×{3}(10)→(2100),10個

  {3,3}(100)→(1000),5個

20

30,30

20,30,20

5,10,10,5

 1列目:正三角形40

 2列目:正方形30

 3列目:正三角形20

 1列目:四面体5

 2列目:三角柱10

 3列目:三角柱10

 4列目:四面体5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[8]{3,3}(0110)

  {3,3}(110)→(12,18,8,1),5個

  {}(10)×{}(0)→(3,3,1,0),10個

  {}(0)×{3}(01)→(1000),10個

  {3,3}(011)→(1000),5個

60,−30

90,−30

40,−10,10

5,0,0,5

 1列目:正三角形20,正六角形20

 2列目:正三角形−10

 3列目:正三角形10

 1列目:{33}(110)5

 4列目:{33}(011)5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[9]{3,3}(0101)

  {3,3}(101)→(12,24,14,1),5個

  {}(01)×{}(0)→(3,3,1,0),10個

  {}(1)×{3}(01)→(2100),10個

  {3,3}(010)→(1000),5個

60,−30

120,−30

70,−10,20

5,0,10,5

 1列目:正三角形40,正方形30

 2列目:正三角形−10

 3列目:正三角形10

 1列目:{33}(101)5

 3列目:三角柱10

 4列目:{33}(010)5→[6]と一致

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[10]{3,3}(0011)

  {3,3}(011)→(12,18,8,1),5個

  {}(11)×{}(0)→(6,6,1,0),10個

  {}(1)×{3}(00)→(2100),10個

  {3,3}(001)→(1000),5個

60,−60,20

90,−60,10

40,−10,0

5,0,0,5

 1列目:正三角形20,正六角形20

 2列目:正六形−10

 1列目:{33}(011)5

 4列目:四面体5→[5]と一致

===================================