■基本単体の直角三角錐分割(その6)
1,1,1,1,1
2,2,1,3
3,1,2
1,1,
0
はそれぞれ,
(−1,0),(0,1),(1,2),(2,3),(2,4)
(−1,1),(0,2),(1,3),(2,4)
(−1,2),(0,3),(1,4)
(−1,3),(0,4)
(−1,4)
に対応していて,(1,4)=2,(2,4)=3より,
AB^2=1/(1,4)=1/2
BE^2=1/(1,4)(2,4)=1/6
EC^2=1/(2,4)=1/3
===================================
(s,s)=0,(s,s+1)=1
2行目(s−1,s+1)の積
(−1,1)(0,2)=sec^2α
(0,2)(1,3)=sec^2β
(1,3)(2,4)=sec^2γ
また,
(t,u)(s,v)+(u,s)(t,v)+(s,t)(u,v)=0より
(s,t)={(s,t−1)(s+1,t)−1}/(s+1,t−1)
===================================