■完全数と親和数の公式(その2)
2^n×2^n−1=4^n−1=(4−1)(4^n-1+4^n-2+・・・+1)であるから,2^n×2^n−1は3で割り切れる.
2^n×2^n=1 (mod3)
2^n=+1,2^n-1=−1 (mod3)
2^n=−1,2^n-1=+1 (mod3)
2^n−1は素数であるから,
2^n−1=−2=1,2^n-1=+1 (mod3)
したがって,6を除く偶数の完全数を9で割ると1あまる.
===================================
6を除く偶数の完全数は1^3+3^3+5^3+7^3+9^3+・・・の部分和となる.
28=1^3+3^3
496=1^3+3^3+5^3+7^3
1^3+3^3+5^3+7^3+9^3+・・・
=1^3+3^3+5^3+・・・+(2n+1)^3−2^3{1^3+2^3+3^3+・・・+n^3}
={{2n+1)(2n+2)/2}^2−2^3{n(n+1)/2}^2
={(n+1)(2n+1)}^2−2{n(n+1)}^2
=(n+1)^2(2n^2+4n+1)
n=1のとき,28
n=3のとき,496
===================================
(n+1)^2(2n^2+4n+1)
=(n^2+2n+1)(2n^2+4n+1)
(n^2+2n+1)=2^k-1
(2n^2+4n+1)=2^k−1
この観点からいえば,完全数の問題は
[1](2n^2+4n+1)=2(n+1)^2−1
[2]2(n+1)^2−1=2^k−1→n+1=2^(k-1)/2
型の素数を見つける問題となる.
===================================
[おまけ]
フィボナッチ数は5次式
−y^5+2y^4x+y^3x^2−2y^2x^3−y(x^4−2)
の正整数値であることが示されている.
===================================