■置換多面体の空間充填性(その384)

 立方体(正測体)の場合はどうなるのだろうか? 4次元の場合で確かめてみたい.立方体と正軸体の場合を比較すると

===================================

[1]{4,3,3}(0001)

  {3,3}(001)8個→(1331),8個

  {3}(01)×{}(0)12個→(1210),12個

  {}(1)×{4}(00)6個→(1100),6個

  {4,3}(000)1個→(1000),1個

8,−12,6,−1

24,−24,6,0

24,−12,0,0

8,0,0,0

[1]{3,3,4}(1000)

 8面からなる図形で,頂点次数は6であるからその頂点は6である.これは正八面体と思われ,その辺数は12である.

  {3,4}(000)0個→(1000)1個

  {4}(00)×{}(1)0個→(1000)6個

  {}(0)×{3}(10)0個→(1000)12個

  {3,3}(100)8個→(1441)8個

0,6

0,0,12

0,0,0,8

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[2]{4,3,3}(0010)

  {3,3}(010)4個→(1441),4個

  {3}(10)×{}(0)4個→(1210),4個

  {}(0)×{4}(00)1個→(1000),1個

  ()×{4,3}(001)2個→(1000),2個

4,−4,1

16,−8,0

16,−4,0

4,0,0,2

[2]{3,3,4}(0100)

 6面からなる図形で,頂点次数は8であるからその頂点数は8である.これは立方体と思われ,その辺数は12である.

  {3,4}(100)2個→(1441)2個

  {4}(00)×{}(0)0個→(1000)1個

  {}(0)×{4}(01)0個→(1000)4個

  {4,3}(010)4個→(1441)4個

2,−1

8,0

8,0,4

2,0,0,4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[3]{4,3,3}(0011)

  {3,3}(011)4個→(1331),4個

  {3}(11)×{}(1)4個→(1210),4個

  {}(1)×{4}(00)1個→(1100),1個

  ()×{4,3}(0010)1個→(1000),1個

4,−4,1

12,−8,1

12,−4,0

4,0,0,1

[3]{3,3,4}(1100)

 5面からなる図形で,頂点次数は5であるからその頂点数は5である.これは四角錐と思われ,その辺数は8である.

  {3,4}(100)1個→(1441)1個

  {4}(00)×{}(1)0個→(1000)1個

  {}(0)×{3}(11)0個→(1000)4個

  {3,3}(110)4個→(1000)4個

4,1

4,0,4

1,0,0,4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[4]{4,3,3}(0110)

  {3,3}(110)2個→(1331),2個

  {3}(10)×{}(0)1個→(1210),1個

  {}(0)×{4}(01)1個→(1000),1個

  ()×{4,3}(010)2個→(1000),2個

2,−1

6,−2

6,−1,1

2,0,0,2

[4]{3,3,4}(0110)

 4面からなる図形で,頂点次数は4であるからその頂点数は4である.これは三角錐と思われ,その辺数は6である.

  {3,4}(110)2個→(1331)2個

  {4}(10)×{}(0)0個→(1210)1個

  {}(0)×{3}(01)0個→(1000)1個

  {3,3}(011)2個→(1000)2個

2,−1

6,−2

6,−1,1

2,0,0,2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[5]{4,3,3}(1001)

  {3,3}(001)1個→(1331),1個

  {3}(01)×{}(1)3個→(1210),3個

  {}(1)×{4}(10)3個→(1100),3個

  {4,3}(100)1個→(1000),1個

3,3

3,6,3

1,3,3,1

[5]{3,3,4}(1001)

 8面からなる図形で,頂点次数は6であるからその頂点数は6である.これは正八面体と思われ,その辺数は12である.

  {3,4}(001)1個→(1331)1個

  {4}(01)×{}(1)3個→(1210)3個

  {}(1)×{3}(10)3個→(1100)3個

  {3,3}(100)1個→(1000)1個

3,3

3,6,3

1,3,3,1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[6]{4,3,3}(0101)

  {3,3}(101)2個→)1441),2個

  {3}(01)×{}(0)1個→(1210),1個

  {}(1)×{4}(01)2個→(1100),2個

  {4,3}(010)1個→(1000)1個

2,−1

8,−2

8,−1,2

2,0,2,1

[6]{3,3,4}(1010)

 5面からなる図形で,頂点次数は6であるからその頂点数は6である.これは三角柱と思われ,その辺数は9である.

  {3,4}(010)1個→(1441)1個

  {4}(10)×{}(1)2個→(1210)2個

  {}(0)×{3}(10)0個→(1000)1個

  {3,3}(101)2個→(1000)2個

4,2

4,4,1

1,2,0,2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[7]{4,3,3}(1011)

  {3,3}(011)1個→(1331)1個

  {3}(11)×{}(1)2個→(1210)2個

  {}(1)×{4}(10)1個→(1100)1個

  {4,3}(101)1個→(1000)1個

3,2

3,4,1

1,2,1,1

[7]{3,3,4}(1101)

 5面からなる図形で,頂点次数は5であるからその頂点数は5である.これは四角錐と思われ,その辺数は8である.

  {3,4}(101)1個→(1441)1個

  {4}(01)×{}(1)1個→(1210)1個

  {}(1)×{3}(11)2個→(1100)2個

  {3,3}(110)1個→(1000)1個

4,1

4,2,2

1,1,2,1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[8]{4,3,3}(0111)

  {3,3}(111)2個→)1331)2個

  {3}(11)×{}(0)1個→(1210)1個

  {}(1)×{4}(01)1個→(1100)1個

  {4,3}(011)1個→(1000)1個

2,−1

6,−2

6,−1,1

2,0,1,1

[8]{3,3,4}(1110)

 4面からなる図形で,頂点次数は4であるからその頂点数は4である.これは三角錐と思われ,その辺数は6である.

  {3,4}(110)1個→(1331)1個

  {4}(10)×{}(1)1個→(1210)1個

  {}(0)×(3}(11)0個→(1000)1個

  {3,3}(111)2個→(1000)2個

3,1

3,2,1

1,1,0,2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[9]{4,3,3}(1111)

  {3,3}(111)1個→(1331)1個

  {3}(11)×{}(1)1個→(1210)1個

  {}(1)×{4}(11)1個→(1100)1個

  {4,3}(111)1個→(1000)1個

3,1

3,2,1

1,1,1,1

[9]{3,3,4}(1111)

 4面からなる図形で,頂点次数は4であるからその頂点数は4である.これは三角錐と思われ,その辺数は6である.

  {3,4}(111)1個→(1331)1個

  {4}(11)×{}(1)1個→(1210)1個

  {}(1)×{3}(11)1個→(1100)1個

  {3,3}(111)1個→(1000)1個

3,1

3,2,1

1,1,1,1

===================================