■サイコロの目と幾何分布(その20)
Q(x)・R(x)=x(x+1)(x^2+1)(x^2+x+1)(x^2−x+1)(x^4−x^2+1)
の続きである.
===================================
[1]
Q(x)=x(x+1)(x^2+1)(x^2+x+1)=x+2x^2+3x^3+3x^4+2x^5+x^6→12面体サイコロ{1,2,2,3,3,3,4,4,4,5,5,6}
R(x)=(x^2−x+1)(x^4−x^2+1)=1−x+x^3−x^5+x^6→不適
[2]
Q(x)=x(x+1)(x^2+1)(x^2−x+1)=x+x^2+x^7+x^8→4面体サイコロ{1,2,7,8}
R(x)=(x^2+x+1)(x^4−x^2+1)=1+x−x^3+x^5+x^6→不適
[3]
Q(x)=x(x+1)(x^2+1)(x^4−x^2+1)=x+x^2+x^7+x^8→4面体サイコロ{1,2,7,8}
R(x)=(x^2+x+1)(x^2−x+1)=1+x^2+x^4→3面体サイコロ{0,2,4}
[4]
Q(x)=x(x+1)(x^2+x+1)(x^2−x+1)=x+x^2+x^3+x^4+x^5+x^6→6面体サイコロ{1,2,3,4,5,6}
R(x)=(x^2+1)(x^4−x^2+1)=1+x^6→2面体サイコロ{0,6}
[5]
Q(x)=x(x+1)(x^2+x+1)(x^4−x^2+1)
=x+2x^2+x^3−x4+x^5+x^6+2x^7+x^8→不適
[6]
Q(x)=x(x+1)(x^2−x+1)(x^4−x^2+1)
=(x^4+x)(x^4−x^2+1)=x−x^3+x^4+x^5−x^6+x^8→不適
[7]
Q(x)=x(x^2+1)(x^2+x+1)(x^2−x+1)=x+2x^3+2x^5+x^7→6面体サイコロ{1,3,3,5,5,7}
R(x)=(x+1)(x^4−x^2+1)=1+x−x^2−x^3+x^4+x^5→不適
[8]
Q(x)=x(x^2+1)(x^2+x+1)(x^4−x^2+1)=x+x^2+x^3+x^7+x^8+x^9→6面体サイコロ{1,2,3,7,8,9}
R(x)=(x+1)(x^2−x+1)=x^3+1→2面体サイコロ{0,3}
[9]
Q(x)=x(x^2+1)(x^2−x+1)(x^4−x^2+1)=x−2x^2+2x^3+x^4−x^5+x^7−x^8+x^9→不適
[10]
Q(x)=x(x^2+x+1)(x^2−x+1)(x^4−x^2+1)=x+x^5+x^9→3面体サイコロ{1,5,9}
R(x)=(x+1)(x^2+1)=1+x+x^2+x^3→4面体サイコロ{0,1,2,3}
===================================