■半立方体の要素数
半立方体(n次元の超立方体において,ひとつおきの頂点(全体で2^n-1個)を結んでできる図形)の要素数を計算してみたところ,やはり,7次元までは個別にうまく計算できたものの8次元でゆきづまりました.n≧4では側面(1次元低い胞)が2種類現れて,次元を下げていってもf4以上で2種類の図形が複雑に絡み合うのが原因です.
3次元:(f0,f1,f2)=(4,6,4) (正四面体)
4次元:(f0,f1,f2,f3)=(8,24,32,16) (正16胞体)
5次元:(f0,f1,f2,f3,f4)=(16,80,160,120,16+10)
6次元:(f0,f1,f2,f3,f4,f5)=(32,240,640,640,192+60,32+12)
7次元:(f0,f1,f2,f3,f4,f5,f6)=(64,672,2240,2800,1344+280,448+84,64+14)
f2は正三角形,f3は正四面体,f4以上で2種類の形の各々の和
===================================
そこで,漸化式を作ってみたところ,
合計=2^n-1・(n,k+1)+2n・f(n−1,k)
f(n,0)=合計/2n
f(n,1)=合計/n
f(n,k)=合計/(n−k),k=2〜n−1
の形で与えられる.
漸化式を解いてみると,
f(n,k)=n!/(k+1)!(n−k)!{2^n-1(n−k)+2^n-k(k+1)}
ときれいな形にまとまった.
これは
f(n,k)=n次元立方体のk面数+2^n-k-2(n次元立方体のn−k−1面数)
になっている.
===================================