■真五角の穴を開ける回転ドリル(その15)

α=π/n,頂点(0,1),底辺の中点(0,-cosα)

c=cosα、s=sinα、η=2c(1+c)

E=(0,1)-η(s,c)を中心として

半径r=η=2c(1+c)の弧を描けばよいことになる。

n=3のとき、η=3/2

E=(0,1)-3/2(√3/2,1/2)=(-3√3/4,1/4)

===================================

Ex=-(1+cosα)cosψ1cosψ2/sinα

Ey=1/2(1+cosα)sin(ψ1-ψ2)/sinα+(1-cosα)/2

Er=η

頂点を通る円弧の場合、

ψ1=2α-π/2、ψ2=π/2-α

tanα=(1+cosα)/x

x=(1+cosα)/tanα

η=2xsinα=2c(1+c)

Ex=-(1+cosα)sin2α=2c(1+c)s

Ey=-1/2(1+cosα)sin3α/sinα+(1-cosα)/2=1-2c^2(1+c)

===================================

C(-(1+cosα)/2tanα,-cosα)=(-c(1+c)/2s,-c)

外接円の半径は1

頂点の座標は

P0(0,1)

P1(sin2α,cos2α)

P2(sin4α,cos4α)

P3(sin6α,cos6α)となる。

P0P1

y-1=tan(π-α)・x =-tanα・x

Cからの距離η

|-c(1+c)/s・s/c-c-1|/{1+(tanα)^2}^1/2

{1+(tanα)^2}^1/2=1/cより2c(c+1)

垂線の傾きはψ2=π/2-α

ψ1=α-(π/2-α)=2α-π/2

δ=(1-r/c-r+c)/2

η=2xsinα=2c(1+c)

Er=η-r(sin2α+s)/s=2c(1+c)-r(2c+1)・・・OK

Ex=-(1-r/c-r+c)sin2α=-(1-r/c-r+c)2sc

中心(Ex,yy),半径Erの円が接点(rs,1-r/c+rc)を通る

(x-Ex)^2+(y-yy)^2=Er^2

(rs+2(1-r/c-r+c)sc)^2+(yy-1+r/c-rc)^2=(2c(1+c)-r(2c+1))^2

s^2(r+2c-2r-2cr+2c^2))^2+(yy-1+r/c-rc)^2=(2c(1+c)-r(2c+1))^2

s^2(2c(1+c)-r(1+2c))^2+(yy-1+r/c-rc)^2=(2c(1+c)-r(2c+1))^2

(yy-1+r/c-rc)^2=c^2(2c(1+c)-r(2c+1))^2

yy-1+r/c-rc=-c(2c(1+c)-r(2c+1)

y=-2c^2(1+c)+1+rc(2c+1)+rc-r/c

y=-2c^2(1+c)+1+r(2c^2+c+c-1/c}

y=-2c^2(1+c)+1+r(2c^2+2c-1/c}・・・OK

===================================

中心(Ex,yy),半径Erの円が接点(rs,r-c-rc)を通る

(x-Ex)^2+(y-yy)^2=Er^2

(rs+2(1-r/c-r+c)sc)^2+(yy-r+c+rc)^2=(2c(1+c)-r(2c+1))^2

|-2c^2(1+c)+1+r(2c^2+2c-1/c}-1+r/c-rc|=yy-r+c+rc

2c^2(1+c)-1-r(2c^2+2c-1/c}+1-r/c+rc=yy-r+c+rc

y=2c^2(1+c)-c-r(2c^2+2c-1}

===================================

この2円の交点は求められるだろうか?

(x-Ex)^2+(y+2c^2(1+c)-1-r(2c^2+2c-1/c})^2=Er^2[1]

(x-Ex)^2+(y-{2c^2(1+c)-c-r(2c^2+2c-1}})^2=Er^2[2]

y+2c^2(1+c)-1-r(2c^2+2c-1/c}=-y+{2c^2(1+c)-c-r(2c^2+2c-1}}

y-1-r(-1/c}=-y-c-r(-1)}

2y=1-c+r(1-1/c)

y=(1-c)/2+r(1-1/c)/2・・・OK

===================================

[1]

(x-Ex)^2+((1-c)/2+2c^2(1+c)-1-r(2c^2+2c-1/c}+r(1-1/c)/2)^2=Er^2

(x-Ex)^2+(2c^2(1+c)-(1+c)/2-r(2c^2+2c-1/2-1/2c})^2=Er^2

===================================

[2]

(x-Ex)^2+((1-c)/2+-2c^2(1+c)+c+r(2c^2+2c-1}+r(1-1/c)/2})^2=Er^2

(x-Ex)^2+(-2c^2(1+c)+c+(1+c)/2+r(2c^2+2c-1}+r(1-1/c)/2})^2=Er^2

(x-Ex)^2+(-2c^2(1+c)+(1+c)/2+r(2c^2+2c-1/2-1/2c)})^2=Er^2

xも等しくなった

(x-Ex)^2=Er^2-(-2c^2(1+c)+(1+c)/2+r(2c^2+2c-1/2-1/2c)})^2

===================================