■真五角の穴を開ける回転ドリル(その15)
α=π/n,頂点(0,1),底辺の中点(0,-cosα)
c=cosα、s=sinα、η=2c(1+c)
E=(0,1)-η(s,c)を中心として
半径r=η=2c(1+c)の弧を描けばよいことになる。
n=3のとき、η=3/2
E=(0,1)-3/2(√3/2,1/2)=(-3√3/4,1/4)
===================================
Ex=-(1+cosα)cosψ1cosψ2/sinα
Ey=1/2(1+cosα)sin(ψ1-ψ2)/sinα+(1-cosα)/2
Er=η
頂点を通る円弧の場合、
ψ1=2α-π/2、ψ2=π/2-α
tanα=(1+cosα)/x
x=(1+cosα)/tanα
η=2xsinα=2c(1+c)
Ex=-(1+cosα)sin2α=2c(1+c)s
Ey=-1/2(1+cosα)sin3α/sinα+(1-cosα)/2=1-2c^2(1+c)
===================================
C(-(1+cosα)/2tanα,-cosα)=(-c(1+c)/2s,-c)
外接円の半径は1
頂点の座標は
P0(0,1)
P1(sin2α,cos2α)
P2(sin4α,cos4α)
P3(sin6α,cos6α)となる。
P0P1
y-1=tan(π-α)・x =-tanα・x
Cからの距離η
|-c(1+c)/s・s/c-c-1|/{1+(tanα)^2}^1/2
{1+(tanα)^2}^1/2=1/cより2c(c+1)
垂線の傾きはψ2=π/2-α
ψ1=α-(π/2-α)=2α-π/2
δ=(1-r/c-r+c)/2
η=2xsinα=2c(1+c)
Er=η-r(sin2α+s)/s=2c(1+c)-r(2c+1)・・・OK
Ex=-(1-r/c-r+c)sin2α=-(1-r/c-r+c)2sc
中心(Ex,yy),半径Erの円が接点(rs,1-r/c+rc)を通る
(x-Ex)^2+(y-yy)^2=Er^2
(rs+2(1-r/c-r+c)sc)^2+(yy-1+r/c-rc)^2=(2c(1+c)-r(2c+1))^2
s^2(r+2c-2r-2cr+2c^2))^2+(yy-1+r/c-rc)^2=(2c(1+c)-r(2c+1))^2
s^2(2c(1+c)-r(1+2c))^2+(yy-1+r/c-rc)^2=(2c(1+c)-r(2c+1))^2
(yy-1+r/c-rc)^2=c^2(2c(1+c)-r(2c+1))^2
yy-1+r/c-rc=-c(2c(1+c)-r(2c+1)
y=-2c^2(1+c)+1+rc(2c+1)+rc-r/c
y=-2c^2(1+c)+1+r(2c^2+c+c-1/c}
y=-2c^2(1+c)+1+r(2c^2+2c-1/c}・・・OK
===================================
中心(Ex,yy),半径Erの円が接点(rs,r-c-rc)を通る
(x-Ex)^2+(y-yy)^2=Er^2
(rs+2(1-r/c-r+c)sc)^2+(yy-r+c+rc)^2=(2c(1+c)-r(2c+1))^2
|-2c^2(1+c)+1+r(2c^2+2c-1/c}-1+r/c-rc|=yy-r+c+rc
2c^2(1+c)-1-r(2c^2+2c-1/c}+1-r/c+rc=yy-r+c+rc
y=2c^2(1+c)-c-r(2c^2+2c-1}
===================================
この2円の交点は求められるだろうか?
(x-Ex)^2+(y+2c^2(1+c)-1-r(2c^2+2c-1/c})^2=Er^2[1]
(x-Ex)^2+(y-{2c^2(1+c)-c-r(2c^2+2c-1}})^2=Er^2[2]
y+2c^2(1+c)-1-r(2c^2+2c-1/c}=-y+{2c^2(1+c)-c-r(2c^2+2c-1}}
y-1-r(-1/c}=-y-c-r(-1)}
2y=1-c+r(1-1/c)
y=(1-c)/2+r(1-1/c)/2・・・OK
===================================
[1]
(x-Ex)^2+((1-c)/2+2c^2(1+c)-1-r(2c^2+2c-1/c}+r(1-1/c)/2)^2=Er^2
(x-Ex)^2+(2c^2(1+c)-(1+c)/2-r(2c^2+2c-1/2-1/2c})^2=Er^2
===================================
[2]
(x-Ex)^2+((1-c)/2+-2c^2(1+c)+c+r(2c^2+2c-1}+r(1-1/c)/2})^2=Er^2
(x-Ex)^2+(-2c^2(1+c)+c+(1+c)/2+r(2c^2+2c-1}+r(1-1/c)/2})^2=Er^2
(x-Ex)^2+(-2c^2(1+c)+(1+c)/2+r(2c^2+2c-1/2-1/2c)})^2=Er^2
xも等しくなった
(x-Ex)^2=Er^2-(-2c^2(1+c)+(1+c)/2+r(2c^2+2c-1/2-1/2c)})^2
===================================