
＜ 三角関数と双曲線関数の融合域（その６４）＞ 

 

ゼータの香りの漂う公式の極限公式を新たに三つ見出したので下方に青色式で示す。なお、同公式は多

く出すぎたため、今回のものに関係ないグループは略した。 

 

以下で、双曲線関数 sinh, cosh, tanhはそれぞれ sh, ch, thと略記した。例えば、sh2aは sinh(2a)のこと

である。aは任意の実数である。tan-1, th-1はそれぞれ arctan,arctanhである。logは自然対数、eは自然対数

の底。sin, cos, tanは通常の表記である。 

なお、limでの a->+0は aをプラス側から 0に近づける意味である。 

＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝ 

◆ ゼータの香りの漂う公式の極限公式 
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今回、これらの青色式の極限公式を見出した。なお、Wolfram Alphaによる数値検証でも式が成立することを

確認している。 

 これらの式の左辺を見ると、まさにゼータの香りが漂っていることがわかるであろう。＜Ｓ９－１６＞はと

ても変わっているが、これもやはりゼータが香っている。 

 ＜Ｓ９－１６＞が面白い形をしている。この＜Ｓ９－１６＞の証明の概要を以下に示す。 

************************************************************ 

＜Ｓ９－１６＞の証明 

次の[基本式 2]の式から出発する。これは２年以上前にこちらで導出した二変数の母等式であり、私の中では 

第二系列 Cos基本式(二変数版)に当たるものである。なお、xの条件は、前回の-π≦x≦πから今回の”xは任

意実数”に変更した。こちらが正しい。 

cosx

ea+1
+

cos2x

e2a+1
+

cos3x

e3a+1
+

cos4x

e4a+1
+・・  

={−
1

2
+

sha

2(cha−cosx)
} − {−

1

2
+

sh2a

2(ch2a−cosx)
} + {−

1

2
+

sh3a

2(ch3a−cosx)
} − {−

1

2
+

sh4a

2(ch4a−cosx)
} + −・・ --[基本式 2] 

https://ikuro-kotaro.sakura.ne.jp/koramu2/27926_r5.pdf


                                                                  (x は任意実数, a > 0) 

上式を a で微分すると、次となる。 
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 上式で、xを aと置いて次となる。 

cosa

ch2a
+

2cos2a

ch22a
+

3cos3a

ch23a
+

4cos4a

ch24a
+・・                                                       

＝                                            ＝2 (
ch2a∙cosa−1

(ch2a−cosa)2 −
2(ch4a∙cosa−1)

(ch4a−cosa)2 +
3(ch6a∙cosa−1)

(ch6a−cosa)2 −
4(ch8a∙cosa−1)

(ch8a−cosa)2 + −・・)    ---[2] 

                                                                       ( a > 0) 

 

この両辺に a2を掛けて（右辺は各項に掛ける）、aを 0に近づけていくと右辺はロピタルの定理から最終的に 
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となり、最後に左辺と右辺を入れ替えて、形を整理して目的の＜Ｓ９－１６＞に到達した。 
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終わり。 

************************************************************ 

 

 このようにして＜Ｓ９－１６＞は得られた。証明のポイントは、これまでと同様、[2]の両辺にわざわざ a2を

掛ける（右辺は各項に掛ける）点にある。さらに、xを aと置いた簡単な操作の裏には数理哲学的に極めて奥深

い操作が絡んでいることもこれまで述べてきた通りである。 

 

最後に、気になる点や想うことなど述べておく。 
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●＜Ｓ９－１２＞と今回の三式を並べよう。 
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 私の考えでは、＜Ｓ９－１４＞と＜Ｓ９－１５＞は絶対に明示的な特殊値は求まらない！ 

その理由を述べるのは紙数を要するが、簡単にいえば、もし＜Ｓ９－１４＞左辺や＜Ｓ９－１５＞左辺の級数

が明示的な特殊値をもったならば、ζ(3)の奇数ゼータが明示的な特殊値をもってしまうことになり、とてもお

かしなことになるからである。昔、開発したテイラーシステムからそんなことにならないことはほぼわかって

いる。 

 ただし、＜Ｓ９－１６＞左辺に限っては、もしかしたら明示的な特殊値をもつかもしれない・・とも思って

いる。級数の形が特殊なのでよくわからない。 

 はたして＜Ｓ９－１６＞左辺は、＜Ｓ９－１２＞のような特殊値をもつのだろうか？ 

持つのか？持たないのか？現時点では不明。公式集にも＜Ｓ９－１６＞左辺の級数は載っていない。 

 

●この１年、極限公式を数多く見出してきたが、その導出の過程を冷静に振り返れば、ひらすら恒等式の持つ

特異点を（疑似的に）解消してきた作業であったとはたと気づいた。例えば、今回の証明では、[2]の右辺に存

在する a=0という特異点を解消しているのである。 

 過去に見出してきた恒等式の中で、よい形の特異点をもつ式はそれほど多くなく全体の 1/5ほどの割合に過

ぎない。ただし、いろいろなパターンがあって、証明中の[1]からは x=0として log2極限公式も出るし、また

[2]を経由して今回の導出のように＜Ｓ９－１６＞という面白い公式も得られるというふうに状況は千変万化と

いう感じである。もちろん、その千変万化は証明中の[基本式 2]から生まれている。 
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                                                                  (x は任意実数, a > 0) 
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