■三角数=平方数(その42)

x^2-2y^2=+/-1

  an+1+bn+1√2=(1+√2)^n(an+bn√2)

           =(an+2bn)+(an+bn)√2

(1,1),(3,2)

x^2-2y^2=1

  an+1+bn+1√2=(3+2√2)^n(an+bn√2)

           =(3an+4bn)+(2an+3bn)√2

(3,2),(17,12)

p^2-2q^2=1のとき

(3p+4q)^2-2(2p+3q)^2=p^2-2q^2=1

un+2=A^2un=(a+d)Aun-(ad-bc)Iun

=(a+d)un+1-(ad-bc)un

[3,4]

[2,3]=6un+1-1un

===================================

x^2-3y^2=1

  an+1+√3bn+1=(2+√3)(an+√3bn)

          =(2an+3bn)+√3(an+2bn)

(2,1)

===================================

x^2-5y^2=+/-1

  an+1+bn+1√5=(2+√5)(an+bn√5)

          =(2an+5bn)+√5(an+2bn)

(2,1)

x^2-5y^2=1

  an+1+bn+1√5=(9+4√5)(an+bn√5)

          =(9an+20bn)+√5(4an+9bn)

(9,4)

p^2-5q^2=1のとき

(9p+20q)^2-5(4p+9q)^2=p^2-5q^2=1

un+2=A^2un=(a+d)Aun-(ad-bc)Iun

=(a+d)un+1-(ad-bc)un

[9,20]

[4,9]=18un+1-1un

===================================

x^2-6y^2=1

  an+1+√6bn+1=(5+2√6)(an+√6bn)

          =(5an+12bn)+√6(2an+5bn)

(5,2)

===================================

x^2-7y^2=1

  an+1+√7bn+1=(8+3√7)(an+√7bn)

          =(8an+21bn)+√3(3an+8bn)

(8,3)

===================================

x^2-8y^2=1

  an+1+√8bn+1=(3+√8)(an+√8bn)

          =(3an+8bn)+√8(an+3bn)

(3,1)

===================================

x^2-10y^2=+/-1

  an+1+bn+1√10=(3+√10)(an+bn√10)

          =(3an+10bn)+√10(an+3bn)

(3,1)

x^2-10y^2=1

  an+1+bn+1√10=(19+6√10)(an+bn√10)

          =(19an+60bn)+√10(6an+19bn)

(19,6)

p^2-10q^2=1のとき

(19p+60q)^2-10(6p+19q)^2=p^2-10q^2=1

un+2=A^2un=(a+d)Aun-(ad-bc)Iun

=(a+d)un+1-(ad-bc)un

[19,60]

[6,19]=19un+1-un

===================================