■三角数=平方数(その42)
x^2-2y^2=+/-1
an+1+bn+1√2=(1+√2)^n(an+bn√2)
=(an+2bn)+(an+bn)√2
(1,1),(3,2)
x^2-2y^2=1
an+1+bn+1√2=(3+2√2)^n(an+bn√2)
=(3an+4bn)+(2an+3bn)√2
(3,2),(17,12)
p^2-2q^2=1のとき
(3p+4q)^2-2(2p+3q)^2=p^2-2q^2=1
un+2=A^2un=(a+d)Aun-(ad-bc)Iun
=(a+d)un+1-(ad-bc)un
[3,4]
[2,3]=6un+1-1un
===================================
x^2-3y^2=1
an+1+√3bn+1=(2+√3)(an+√3bn)
=(2an+3bn)+√3(an+2bn)
(2,1)
===================================
x^2-5y^2=+/-1
an+1+bn+1√5=(2+√5)(an+bn√5)
=(2an+5bn)+√5(an+2bn)
(2,1)
x^2-5y^2=1
an+1+bn+1√5=(9+4√5)(an+bn√5)
=(9an+20bn)+√5(4an+9bn)
(9,4)
p^2-5q^2=1のとき
(9p+20q)^2-5(4p+9q)^2=p^2-5q^2=1
un+2=A^2un=(a+d)Aun-(ad-bc)Iun
=(a+d)un+1-(ad-bc)un
[9,20]
[4,9]=18un+1-1un
===================================
x^2-6y^2=1
an+1+√6bn+1=(5+2√6)(an+√6bn)
=(5an+12bn)+√6(2an+5bn)
(5,2)
===================================
x^2-7y^2=1
an+1+√7bn+1=(8+3√7)(an+√7bn)
=(8an+21bn)+√3(3an+8bn)
(8,3)
===================================
x^2-8y^2=1
an+1+√8bn+1=(3+√8)(an+√8bn)
=(3an+8bn)+√8(an+3bn)
(3,1)
===================================
x^2-10y^2=+/-1
an+1+bn+1√10=(3+√10)(an+bn√10)
=(3an+10bn)+√10(an+3bn)
(3,1)
x^2-10y^2=1
an+1+bn+1√10=(19+6√10)(an+bn√10)
=(19an+60bn)+√10(6an+19bn)
(19,6)
p^2-10q^2=1のとき
(19p+60q)^2-10(6p+19q)^2=p^2-10q^2=1
un+2=A^2un=(a+d)Aun-(ad-bc)Iun
=(a+d)un+1-(ad-bc)un
[19,60]
[6,19]=19un+1-un
===================================