■三角数=平方数(その25)
【4】三角数△と四角数□のパズル
(Q1)△=□?,すなわち,三角数n(n+1)/2が完全平方数m^2となるnの値を求めよ.
(A1)n^2+n=2m^2
4n^2+4n+1=8m^2+1
(2n+1)^2=2(2m)^2+1
ここで,2n+1=p,2m=qとおくと
p^2−2q^2=1 (ペル方程式)
に帰着されます.
(p,q)=(3,2),(17,12),(99,70),(577,408),(3363,2378),・・・
→(n,m)=(1,1),(8,6),(49,35),(288,204),(1681,1189),・・・nは完全平方と完全平方の2倍を交互に繰り返します.
===================================
p^2-2q^2=1の解
P=(α^k+β^k)/2
q=(α^k-β^k)/2√2
α=3+2√2,β=3-2√2 ,α+β=6,αβ=1
n={(α^k+β^k)/2-1}/2
m={(α^k-β^k)/4√2}
Pn+√2qn=(3+2√2)^n=(1+√2)^2n
pn+1+√2qn+1=(3+2√2)(Pn+√2qn)=(3pn+4qn)+√2(2pn+3qn)
pn+1=3pn+4qn=3pn+(8pn-1+12qn-1)=3pn-pn-1+3(3pn-1+4qn-1)=6pn-pn-1
qn+1=2pn+3qn=6pn-1+8qn-1+3qn=3(2pn-1+3qn-1)-qn-1+3qn=6qn-qn-1
P1=3,q1=2,p0=1,q0=0
===================================
ケイリー・ハミルトン
A=[3,4]
[2,3]
un+1=Aun,un+2=Aun+1
un+2=A^2un
A^2=(trA)A-(detA)I
=(a+d)A-(ad-bc)I
un+2=A^2un=(a+d)Aun-(ad-bc)Iun
=(a+d)un+1-(ad-bc)un
=6un+1-un
===================================
p^2-2q^2=-1の解
Pn+√2qn=(1+√2)(3+2√2)^n-1=(1+√2)^2n-1
pn+1+√2qn+1=(3+2√2)(Pn+√2qn)=(3pn+4qn)+√2(2pn+3qn)
pn+1=3pn+4qn=3pn+(8pn-1+12qn-1)=3pn-pn-1+3(3pn-1+4qn-1)=6pn-pn-1
qn+1=2pn+3qn=6pn-1+8qn-1+3qn=3(2pn-1+3qn-1)-qn-1+3qn=6qn-qn-1
P1=1,q1=1,p0=-1,q0=1
A=[3,4]
[2,3]
un+2=A^2un=(a+d)Aun-(ad-bc)Iun
=(a+d)un+1-(ad-bc)un
=6un+1-un
===================================
p^2-2q^2=+/-1の解
Pn+√2qn=(1+√2)^n
P=(α^k+β^k)/2
q=(α^k-β^k)/2√2
α=1+√2,β=1-√2
pn+1+√2qn+1=(1+√2)(Pn+√2qn)=(pn+2qn)+√2(pn+qn)
pn+1=pn+2qn=pn+(2pn-1+2qn-1)=pn+pn-1+(pn-1+qn-1)=2pn+pn-1
qn+1=pn+qn=pn-1+2qn-1+qn=(pn-1+qn-1)+qn=2qn+qn-1
P1=1,q1=1,p0=1,q0=0
A=[1,2]
[1,1]
un+2=A^2un=(a+d)Aun-(ad-bc)Iun
=(a+d)un+1-(ad-bc)un
=2un+1+un
===================================