■三角数=平方数(その24)

【4】三角数△と四角数□のパズル

(Q1)△=□?,すなわち,三角数n(n+1)/2が完全平方数m^2となるnの値を求めよ.

(A1)n^2+n=2m^2

  4n^2+4n+1=8m^2+1

  (2n+1)^2=2(2m)^2+1

ここで,2n+1=p,2m=qとおくと

  p^2−2q^2=1  (ペル方程式)

に帰着されます.

  (p,q)=(3,2),(17,12),(99,70),(577,408),(3363,2378),・・・

 →(n,m)=(1,1),(8,6),(49,35),(288,204),(1681,1189),・・・nは完全平方と完全平方の2倍を交互に繰り返します.

===================================

p^2-2q^2=4の解

P=(α^k+β^k)/2

q=(α^k-β^k)/2√2

α=6+4√2,β=6-4√2

Pn+√2qn=(6+4√2)^n

pn+1+√2qn+1=(6+4√2)(Pn+√2qn)=(6pn+8qn)+√2(4pn+6qn)

pn+1=6pn+8qn=6pn+(32pn-1+48qn-1)=6pn-4pn-1+6(6pn-1+8qn-1)=12pn-4pn-1

qn+1=4pn+6qn=24pn-1+32qn-1+6qn=6(4pn-1+6qn-1)-4qn-1+6qn=12qn-4qn-1

P1=6,q1=4,p0=1,q0=0

===================================

p^2-2q^2=-4の解

P=(α^k+β^k)/2

q=(α^k-β^k)/2√2

α=6+4√2,β=6-4√2

Pn+√2qn=(2+2√2)^n

pn+1+√2qn+1=(2+2√2)(Pn+√2qn)=(2pn+4qn)+√2(2pn+2qn)

pn+1=2pn+4qn=2pn+(8pn-1+8qn-1)=2pn+4pn-1+2(2pn-1+4qn-1)=4pn+4pn-1

qn+1=2pn+2qn=4pn+8qn-1+2qn=2(2pn-1+2qn-1)+4qn-1+2qn=4qn+4qn-1

P1=2,q1=2,p0=1,q0=0

===================================