■三角数=平方数(その14)
三角数tn=n(n+1)/2が平方数m^2ならば・・・
===================================
n(n+1)=2m^2,n^2+n=2m^2,n=2m^2-n^2
t3n+4m+1=(3n+4m+1)(3n+4m+2)/2=M(平方数)
(3n+4m+1)^2+(3n+4m+1)=9n^2+16m^2+1+24nm+8m+6n+3n+4m+1
=9n^2+16m^2+2+24nm+12m+9n
=9n^2+16m^2+2+24m(2m^2-n^2)+12m+9(2m^2-n^2)
=34m^2+2+48m^3-24nm^2+12m=2M
M=17m^2+1+24m^3-12nm^2+6m
M=17m^2+1+24m^3-12m^2(2m^2-n^2)+6m・・・nを消去できないので、この方法では証明は無理
===================================
P=(α^k+β^k)/2
q=(α^k-β^k)/2√2
α=3+2√2,β=3-2√2 ,α+β=6,αβ=1
n={(α^k+β^k)/4-1/2}
m={(α^k-β^k)/4√2}
===================================
n(n+1)={(α^k+β^k)/4-1/2}{(α^k+β^k)/4+1/2}
={(α^k+β^k)/4}^2-1/4
={(α^2k+β^2k+2)/16}-1/4
={(α^2k+β^2k-2)/16}=2m^2
2m^2=2{(α^k-β^k)/4√2}^2={(α^k-β^k)/4}^2
===================================
3n={(3α^k+3β^k)/4-3/2}
4m={(2√2α^k-2√2β^k)/4}
3n+4m=(α^k+1+β^k+1)/4-3/2
t3n+4m+1=(3n+4m+1)(3n+4m+2)/2={(α^k+1+β^k+1)/4-1/2}{(α^k+1+β^k+1)/4+1/2}/2
={(α^k+1+β^k+1)/4}^2-1/4}/2
={(α^2k+2+β^2k+2+2)/32-1/8
={(α^2k+2+β^2k-2)/32
={(α^k+1-β^k-1)^2/32・・・惜しい
===================================