■三角数=平方数(その1)
三角数tn=n(n+1)/2が平方数m^2ならば・・・
===================================
n(n+1)=2m^2,n^2+n=2m^2,n=2m^2-n^2
t3n+4m+1=(3n+4m+1)(3n+4m+2)/2=M(平方数)
(3n+4m+1)^2+(3n+4m+1)=9n^2+16m^2+1+24nm+8m+6n+3n+4m+1
=9n^2+16m^2+2+24nm+12m+9n
=9n^2+16m^2+2+24m(2m^2-n^2)+12m+9(2m^2-n^2)
=34m^2+2+48m^3-24nm^2+12m=2M
M=17m^2+1+24m^3-12nm^2+6m
M=17m^2+1+24m^3-12m^2(2m^2-n^2)+6m・・・nを消去できないので、この方法では証明は無理
===================================