■(x^2−1)(y^2−1)=(z^2−1)^2  (その72)

一般に

  x^2+y^2+z^2=2xyz+n+1

に対して,Z=z−xy,X=x,Y=yとおくと,

 (X^2−1)(Y^2−1)=(Z^2−n)が得られることがわかる.

===================================

x^2+y^2+(Z+xy)^2=2xy(Z+xy)+n+1

Z^2-n=2xyZ+2x^2y^2+1-x^2-y^2-2xyZ-x^2y^2

Z^2-n=1-x^2-y^2+x^2y^2=(1-x^2)(1-y^2)

===================================