■(x^2−1)(y^2−1)=(z^2−1)^2 (その68)
x^2+y^2+z^2=2xyz+2
に対して,Z=z−xy,X=x,Y=yとおいて,
(X^2−1)(Y^2−1)=(Z^2−1)
が得られる.
===================================
恒等式
(n^2−1)((n+1)^2−1)=((n^2+n−1)^2−1)
が得られた.
===================================
(2^2−1)(3^2−1)=(5^2−1)
(3^2−1)(4^2−1)=(11^2−1)
(4^2−1)(5^2−1)=(19^2−1)
であるか,さらに
(5^2−1)(6^2−1)=(29^2−1)
(11^2−1)(12^2−1)=(131^2−1)
(19^2−1)(20^2−1)=(379^2−1)
を組み合わせると,
(2^2−1)(3^2−1)(6^2−1)=(29^2−1)
(3^2−1)(4^2−1)(12^2−1)=(131^2−1)
(4^2−1)(5^2−1)(20^2−1)=(379^2−1)
===================================