■変形するデルタ32面体(その2)
面の形は変わらずに二面角が変わる連続的な運動を「多面体の折り曲げ」という.1813年,コーシーはどんな凸多面体でも折り曲げ不可能なことを証明した(剛性定理).1897年,ブリカールは折り曲げ可能な閉多面体が存在することを証明し,とくに折り曲げ可能8面体については3型に分類されることを述べている.
形状が変わる凹多面体をはじめてみつけたのはブリカールだが,その多面体では面同士が互いに貫通した自己交差をもつものであった.そのため,面を取り除き,辺を針金細工にしなければ実際に作ることはできなかった.
形状の変わる性質を保ったまま面同士が貫通しないもの(すなわち3次元空間に埋め込まれたもの)を見つけたのは1970年代のコネリーで,1978年にはシュテッフェンにより9つの頂点と14の三角形面からなる最も単純な折り曲げ可能多面体が考案されている(それでもなおシュテッフェン多面体の体積に対する多項式をパソコンで求めることはできないという).
===================================
「変形する」にはさまざまな意味があり,
[1]微動・無限小振動する(メイソンのデルタ32面体)
[2]2種類以上の安定した形をとる(ゴールドバーグのデルタ20面体)
[3]連続的に変形する折り曲げ可能多面体(コネリー,シュテッフェン)
のいずれかである.
===================================