
＜ 三角関数と双曲線関数の融合域（その６３）＞ 

 

𝜋2/8に関する不等式の定理の三つ目を見出したので報告したい。それを𝜋2/8 不等式-定理 3と名付け、下方

に青字で示した。それは極限公式とも関係しているため、まず先に過去に出した𝜋2/8 極限公式（3ζ(2)/4極限

公式）を全て列挙し、次に発見した定理を示す。 

また、𝜋2/8 とζ(2)つまりπ2/6 の関係は次の通りとなる。 

ζ(2) ＝1 +1/22 +1/32 +1/42 +・・＝π2/6 

(3/4)ζ(2) ＝1 +1/32 +1/52 +1/72 +・・＝π2/8（一つ上と実質は同じ） 

 

以下では、双曲線関数 sinh, cosh, tanhはそれぞれ sh, ch, thと略記した。例えば、sh2aは sinh(2a)のこ

とである。aは任意の実数である。tan-1, th-1はそれぞれ arctan,arctanhである。logは自然対数、eは自然対

数の底。sin, cos, tanは通常の表記である。 

 

なお、limでの a->+0は aをプラス側から 0に近づける意味である。 

＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝ 

◆
𝜋2

8
極限公式 (3ζ(2)/4極限公式) 
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 上記の＜S２－３＞に関連して、次の𝜋2/8 不等式-定理 3を見出した。 

 

𝜋2/8不等式-定理 3 

 次の(1),(2)が成り立つ。 

 

(1) 任意の正の実数 aについて、次の不等式①と②が成り立つ。 
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(2)  ①と②は上式の形で最良である。すなわち、右辺が𝜋2/8 より僅かでも小さい場合、(1)は成り立たない。 

 

 



今回、この定理を見出した。証明はこちらで示した証明と類似のものになるので略す。なお、Wolfram Alpha

による数値検証でも定理が成立することを確認している。 

 

最後に、気になる点や想うことなど述べておく。 

＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝ 

●今回の定理は、３年前のこちらで示した次の恒等式が基本となって得たものである。 
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 その２年後に私は、上式を元に次の極限公式＜Ｓ２－３＞を得ることになったのだが、[1]を得たときはまさ

かこんな公式が出ようなどとは夢にも思わなかった。 
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  そして＜Ｓ２－３＞からさらに１年後に今回の𝜋2/8 不等式-定理 3を導いたという順番になる。 

 

●  上記[1]を発見したとき、美しい式だ！と思って感動し、その様子はこちらでも記している。[1]はこの種

の恒等式の発見のはしりに当たるもので、それから私は類似的な恒等式を多く得ていくことになる。そし

て、それらの恒等式を元に極限公式をたくさん見出していった（ただし、極限公式が得られる恒等式は全体

の 1/4ほどに限られる）。 

さて、[1]の両辺に a2を掛け（左辺は各項に掛ける）、aを 0に近づけていき、ロピタルの定理を適用すれ

ば＜Ｓ２－３＞が出る。このような感じで、極限公式導出にはロピタルの定理を頻繁に使う。極限公式のみ

ならず、このゼータの香りの漂うシリーズで最もよく使ってきた定理の一つが、ロピタルの定理である。 

こんなに便利な道具を作ったロピタルという人物はさぞかし優秀な数学者だったに違いないとずっと思っ

てきたのだが、あるとき数学史家・高瀬正仁氏のサイトでそうではないことがわかり驚いたことがあった。

ロピタルの定理の本当の発明者は、ヨハン・ベルヌーイ（以下、ヨハン）のようである。ロピタルは数学を

愛好する貴族であり、ヨハンに家庭教師をたのんで数学を勉強していたのである。そしてロピタルがヨハン

から学んだ内容をまとめて史上はじめての微積分の本を出した。その中にヨハンから教わった,ロピタルの

定理の内容を書いたから、“ロピタルの定理”と呼ばれるようになったようである。 

⇒日々のつれづれ |オイラー追想 

 高瀬氏のサイトを見ていると、当時ヨーロッパの近代数学の形成時に時空を超えてまぎれこんだかのよう

な錯覚を覚える。ライプニッツが発見した微分の規則をヤコブとヨハンの二人のベルヌーイ兄弟が吸収し解

明しようと何年にもわたって三者（ライプニッツとベルヌーイ兄弟）の間で往復書簡がかわされ微積分の基

礎が徐々にできあがっていった。 

ロピタル：1661～1704、 ライプニッツ：1646～1716、 ヤコブ・ベルヌーイ：1654～1705、 ヨハン・ベルヌーイ：1667～1748 

＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝ 

                                          2026.1.17 杉岡幹生 

                                    sugioka_m@mvb.biglobe.ne.jp 
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