■ケルビン問題(その8)
同じ大きさの球に内接する正12面体と正20面体とでは,正12面体の方が体積Vも表面積Sも大きい.−−−そんなばかなと思われるかもしれませんが,直感に反して,正12面体は球の66.5%,正20面体は球の60.6%を占めるのです.したがって,正多面体を球に内接させたとき最も球に近い正多面体は正12面体です.一方,外接させれば体積も表面積も正20面体の方が球に近くなります.
このように三次元の問題はなかなか一筋縄ではいきませんが,今回のコラムでは多面体に対する等周問題を取り上げます.
===================================
【1】等周不等式
任意のn次元の等周不等式は,
S^n/V^(n-1)≧n^nvn (vnはn次元単位球の体積)
=n^nπ^(n/2)/Γ(n/2+1)=Cn
で表されます.
n次元等周比(Cn)において,とくに,n=2のときとn=3のときについては,
C2=4π,C3=36π
すなわち,
L^2≧4πS
S^3≧36πV^2
がわかります.以下,
C4=2^7π^2,C5=8/3*5^4π^2,C6=6^5π^3,・・・
となりますが,等周比が有理数(整数)×πの形となるのは,2次元・3次元だけのようです.
また,凸体Vを囲む曲面Sにおいて,平均曲率は,
H=1/2(1/R1+1/R2)
で定義されます.ここで,平均曲率の積分を
M=∫Hds
で表すと,ミンコフスキーの不等式
S^2−3VM≧0
M^2−4πS≧0
これから直ちに
S^3≧36πV^2
が導かれます.
ともあれ,3次元凸集合に対し,表面積をS,体積をVとすると,
S^3≧36πV^2
が成り立ちます.等号成立は球のときだけで,すべての立体中で球が表面積に対して最大の体積をもっています.
多面体の等周問題は,単位球に外接する多面体では,
V=S/3
となることから,
S^3/V^2=9S=27V
が成り立ちます.したがって,与えられた面数nをもつ多面体に関する等周問題は,最小の体積または最小の表面積をもち,球に外接するn面体を定めるという問題に帰着されます.
凸f面体の表面積をS,体積をVとすれば,等周不等式は,
S^3/V^2≧54(f−2)tan(ωf)(4sin^2(ωf)−1)
ωf=f/(f−2)・π/6 f≧3
ただし,等号は3稜頂点多面体に対してのみ成り立つことに注意して下さい.これによって,3稜頂点多面体に対しては,正多面体(正4面体,立方体,正12面体)が同じ面数の多面体の中でも最良となることが証明されるのです.
一方,3角形多面体に関しては
S^3/V^2≧54(f−2)(3tan^2(ωf)−1)
また,これらを包括する一般的な不等式として
S^3/V^2≧9esin(2π/p~)(tan^2(π/p~)tan^2(π/q~)−1)であることが予想されています.
===================================