■トムソン問題(その14)

仮に、頂角41°として計算する

a=1, b=b,c=1,d=1,e=w,f=1

  (12Δ)^2=b^2w^2(4−b^2−w^2)→6Δ

         

a=1, b=w,c=1,d=1,e=w,f=1

  (12Δ)^2=w^4(4-2w^2)→Δ

v=.612326

4πr^3/3=1.44972

体積比0.422376・・・重六角錐より大きい

デルタ12面体の体積の求め方について補足しておきたい。頂角60°として計算する

===================================

【1】デルタ12面体の設計

 デルタ12面体とは12枚の正三角形からなる双子の正十二面体とも呼ばれる多面体である.まず,コラム「変形するデルタ20面体に対する疑義」を参考にしてデルタ12面体を設計してみることにする.

 ここでは,1辺の長さを1とする重三角錐(デルタ6面体)の高さhを求めてみることにする.ピタゴラスの定理を使えば中高生でも簡単に確かめることができると思われるが,

  1/(3−h^2)^(1/2)=tan60°=√3

より

  h=√(8/3)=1.63299

となった.

 重三角錐に1本の切れ込みを入れると,口の開いた重三角錐が得られる.一方の開口重三角錐の高さhから開口の大きさwを求める.式はピタゴラスの定理から簡単に求められ,

  w=f(h)=(4−h^2)^1/2sin(3arctan(3−h^2)^-1/2)

 これは他方の開口重五角錐の高さとなるから,

  h=g(w)=(4−w^2)^1/2sin(3arctan(3−w^2)^-1/2)

 ここで,2つの開口重五角錐が歪みなしに接合できるための条件は

  h=g(f(h))   h:0〜1.63299

である.y=x,y=g(f(x))の交点を求めてみると,

  x=1.28917

が近似解となる.

 開口重三角錐2個,すなわち,合同な4面体6個の組み合わせでデルタ12面体ができあがる.

===================================