■パスカルの三角形についてのある不等式(その5)
シェルピンスキーの三角形のフラクタル次元は
log2/log3=0.6309・・・
であった.
[0,1]を3等分して中央の区間を取り除くという操作を繰り返す.方眼紙を1枚もってきてこの図形にかぶせ,この図形を覆っているマス目の個数を数える.つぎにマス目の大きさを半分にした方眼紙で同じことを繰り返す.もとの図形が線であればマス目の数は2=2^1倍に,面であればマス目の数は4=2^2倍に増える.
マス目の大きさを1/3にした方眼紙で同じことを繰り返すと画素数は2倍になるから,
3^d=2→d=log2/log3=0.6309・・・
===================================
【1】実数のm進展開の分布とハウスドルフ次元
実数のm進展開は0〜m−1の数字で表されますが,各数字(0〜m−1)の出現確率をp0,p1,・・・,pm-1
Σpk=1,すなわち,p0+p1+・・・+pm-1=1
とします.
0と1の間の数のうち,ほとんどの実数はm進展開したとき,各桁に現れる数字の出現確率が均等であることが知られています(正規数).
また,F(p0,p1,・・・,pm-1)を[0,1)上の実数で,各桁に現れる数字(0〜m−1)の出現確率がp0,p1,・・・,pm-1であるような実数の集合とすると,Fのハウスドルフ次元dimFは
dimF=−Σpklogpk/logm
で定義されます.正規数の集合F(1/m,・・・,1/m)のルベーグ測度1であり,したがって,その次元も1となります.
また,0・log0=0と約束しておくことにして,[0,1]を3等分して中央の区間を取り除くという操作を繰り返します.このようにして得られる3分割カントル集合は最も有名なフラクタル集合の1例です.3分割カントル集合は3進展開の各桁に1の現れない数の集合F(1/2,0,1/2)ですが,そのハウスドルフ次元は
log2/log3=0.6309・・・
となります.
===================================