■整数の積(その18)
数学者ハーディがラマヌジャンに会いに行ったとき,タクシーナンバーが1729という何の変哲もない数であったと彼に伝えたところ,ラマヌジャンはそれは2つの3乗数で2通りに表せる最小の数だと答えたというエピソードは大変有名である.
1729=12^3+1^3=10^3+9^3
1729のこの性質は17世紀にフレニクルがすでに見つけていた.フレニクルは12^3+1^3=10^3+9^3のほかにも
9^3+15^3=2^3+16^3
15^3+33^3=2^3+34^3
16^3+33^3=9^3+34^3
19^3+24^3=10^3+27^3
を見つけている.
また,ルジャンドルは6は2つの有理数の3乗和として書けないと主張したが,19世紀末から20世紀初頭のイギリスのパズル作家デュドニーはその反例
6=(17/21)^3+(37/21)^3
を発見した.
===================================