■電卓のちから(その3)
(01)^2=01・・・保型数
(11)^2=121
(21)^2=441
(31)^2=961
(41)^2=1681
(51)^2=2601
(61)^2=3721
(71)^2=5041
(81)^2=6561
(91)^2=8281
(05)^2=25
(15)^2=225
(25)^2=625・・・保型数
(35)^2=1225
(45)^2=2025
(55)^2=3025
(65)^2=4225
(75)^2=5625
(85)^2=7225
(95)^2=9025
(06)^2=36
(16)^2=256
(26)^2=676
(36)^2=1296
(46)^2=2116
(56)^2=3236
(66)^2=4356
(76)^2=5776・・・保型数
(86)^2=7396
(96)^2=9216
最後の桁が1,5,6である数の平方は,最後の桁が1,5,6になることは明らかであろう.
(10k+1)^2=10(10k^2+2k)+1=10(10k^2+2k)+1
(10k+5)^2=10(10k^2+10k)+25=10(10k^2+10k+2)+5
(10k+6)^2=10(10k^2+12k)+36=10(10k^2+12k+3)+6
===================================
最後の桁が6のとき,最後の2桁について調べてみると,
(100k+06)^2=100(100k^2+12k)+36
(100k+16)^2=100(100k^2+32k+2)+56
(100k+26)^2=100(100k^2+52k+6)+76
(100k+36)^2=100(100k^2+72k+12)+96
(100k+46)^2=100(100k^2+92k+21)+16
(100k+56)^2=100(100k^2+112k+31)+36
(100k+66)^2=100(100k^2+132k+43)+56
(100k+76)^2=100(100k^2+152k+57)+76
(100k+86)^2=100(100k^2+172k+73)+96
(100k+96)^2=100(100k^2+192k+92)+16
===================================