■電卓のちから(その3)

  (01)^2=01・・・保型数

  (11)^2=121

  (21)^2=441

  (31)^2=961

  (41)^2=1681

  (51)^2=2601

  (61)^2=3721

  (71)^2=5041

  (81)^2=6561

  (91)^2=8281

  (05)^2=25

  (15)^2=225

  (25)^2=625・・・保型数

  (35)^2=1225

  (45)^2=2025

  (55)^2=3025

  (65)^2=4225

  (75)^2=5625

  (85)^2=7225

  (95)^2=9025

  (06)^2=36

  (16)^2=256

  (26)^2=676

  (36)^2=1296

  (46)^2=2116

  (56)^2=3236

  (66)^2=4356

  (76)^2=5776・・・保型数

  (86)^2=7396

  (96)^2=9216

 最後の桁が1,5,6である数の平方は,最後の桁が1,5,6になることは明らかであろう.

  (10k+1)^2=10(10k^2+2k)+1=10(10k^2+2k)+1

  (10k+5)^2=10(10k^2+10k)+25=10(10k^2+10k+2)+5

  (10k+6)^2=10(10k^2+12k)+36=10(10k^2+12k+3)+6

===================================

 最後の桁が6のとき,最後の2桁について調べてみると,

 (100k+06)^2=100(100k^2+12k)+36

 (100k+16)^2=100(100k^2+32k+2)+56

 (100k+26)^2=100(100k^2+52k+6)+76

 (100k+36)^2=100(100k^2+72k+12)+96

 (100k+46)^2=100(100k^2+92k+21)+16

 (100k+56)^2=100(100k^2+112k+31)+36

 (100k+66)^2=100(100k^2+132k+43)+56

 (100k+76)^2=100(100k^2+152k+57)+76

 (100k+86)^2=100(100k^2+172k+73)+96

 (100k+96)^2=100(100k^2+192k+92)+16

===================================