■置換多面体の空間充填性(その181)

 4次元正多胞体の頂点数,辺数,面数,胞数を掲げる.

       頂点数   辺数   面数    胞数

5胞体      5   10   10     5

8胞体     16   32    24   16

16胞体     8   24    32    8

24胞体    24   96    96   24

120胞体  600 1200   720  120

600胞体  120  720  1200  600

 次の表で(p,q)の組合せを調べると,それぞれ5個の4面体がf3,8個の立方体がf316個の4面体がf3,24個の8面体がf3,120個の12面体がf3,600個の4面体がf3である正多胞体であることを示している.

      境界多面体 境界面p 頂点に集まる面q 辺に集まる胞r

5胞体   正4面体    3        3       3

8胞体   立方体     4        3       3

16胞体  正4面体    3        3       4

24胞体  正8面体    3        4       3

120胞体 正12面体   5        3       3

600胞体 正4面体    3        3       5

 また,この2つの表では,それぞれの詳細について,たとえば,正600胞体(4次元正20面体)は頂点数120,稜数720,正三角形数1200で,600個の正4面体状胞体が各辺のまわりにr=5個ずつ集まっているという状況にあることがわかる.

 このことをすべての正多胞体について記すのはやめておくが,言葉で説明する(あるいはこれを描く)のは易しいが,これを理解するのがいかに難しいかわかるだろう.

 端的にいって,人間の直観や勘が働くのはたがだか3次元空間までで,次元が大きくなるに従い,格子点の配位は非常に複雑となり,われわれが3次元空間でイメージするものとは大きく異なってくる.すなわち,高次元では幾何学的直観が効かないので,多胞体は理解するのが難しい対象ということなのである.

===================================