■はなまるの幾何学(その16)
デルトイドは19世紀の幾何学者シュタイナーがシムソン線の包絡線として研究した図形で,シムソン線というのは三角形の外接円上の任意の1点から3辺に下ろした垂線の足を結ぶ直線のことです.
(その15)に掲げた「2円定理」により,半径2rの円が半径R=3rの円の内側を転がるとき,円上の固定された直径の描く包絡線はデルトイドになるわけですが,デルトイドの場合,この直径の両端も同じデルトイド上にあります.
===================================
【1】デルトイドの幾何学
これにより「デルトイドの接線が曲線に挟まれる部分の長さは一定である」という性質が生じます.これはデルトイドでは長さ4rの棒をデルトイドに接しながら1回転することができるというのと同一です.そして,この事実により掛谷はデルトイドが「掛谷の問題」の解であると予想したのです.
冒頭に述べたことより,デルトイドでは半径2rの円上の定点の軌跡としても与えられますし,また,円周上を反時計回りと時計回りに動く2点P,Qがあり,点Pは点Qの2倍の速さで動くとき,直線PQの包絡線もデルトイドになります.
デルトイドについて,これまで同じ曲線を描くために異なる定義があるのをみてきましたが,他のハイポサイクロイド,エピサイクロイドについてもみてみましょう.すると
(1)半径3rの円が半径R=4rの円の内側を転がるとき,円上の固定された正三角形の頂点の描く軌跡はアステロイドになる.
(2)半径3rの円が半径R=2rの円の外側を転がるとき,円上の固定された正三角形の頂点の描く軌跡はネフロイドになる.
===================================
【2】シムソン線とデルトイド
シムソン線というのは三角形の外接円上の任意の1点から3辺(またはその延長線)に下ろした垂線の足を結ぶ直線のことで,垂線の足は一直線上に並ぶところが面白いところです.初めてデルトイド(三星形)の研究を行ったのはオイラー(1745年)ですが,19世紀の数学者シュタイナーがシムソン線の包絡線として研究したところから,デルトイドはシュタイナーのハイポサイクロイドとも呼ばれています.
デルトイドがもつ性質のひとつは外接円さえ同じであれば,三角形の形に関係なく,同じ形のデルトイドが得られるということです.もう一つの性質はデルトイドで両端を仕切ったシムソン線の長さは一定で,その値は転円の半径をr(すなわち定円の半径を3r)とすると,4rになります.
三角形の各辺の中点,垂線の足,垂心と各頂点を結ぶ線分の中点の9点は同じ円上にあります(フォイエルバッハの9点円).三角形の9点円Qと同心で,半径がその3倍の定円Q’を導線として,Qを通るシムソン線(3本ある)がQ’と交わる点Sにおいて,最初Q’に接していた9点円と同大の円をQ’の内側をころがすとき,最初Sにあった点の描く軌跡がこのデルトイドです.この結果はシュタイナーが初等幾何学的に示しました.
シムソン線は9点円を内接円にもつように描かれたデルトイドに接するというわけです.
===================================