■単純リー環を使った面数数え上げ(その165)
(その116)の(010111)に対して,アルゴリズムをfnまで拡張してみたい.
===================================
【1】正軸体系
(10111)→f^5=(1920,5760,6000,2400,242)
(0111)→f^4=(192,384,248,56)
(111)→f^3=(48,72,26)
(11)→f^2=(8,8)
(1)→f^1=(2)
()→f^0=(1)
g=(12,60,160,240,192,64,1)
f0=12・1920−60・192=11520
f1=12・5760−60・384=46080
f2=12・6000−60・248+160・48=64800
f3=12・2400−60・56+160・72+240・8=38880
f4=12・242−60・1+160・26+240・8+192・2=9308
f5=12・1−60・0+160・1 +240・1+192・1+64・1=668
f6=12・0−60・0+160・0+240・0+192・0+64・0=1・1=1
===================================
【2】正単体系
(10111)→f^5=(360,1080,1140,480,62)
(0111)→f^4=(60,120,80,20)
(111)→f^3=(24,36,14)
(11)→f^2=(6,6)
(1)→f^1=(2)
()→f^0=(1)
g=(7,21,35,35,21,7,1)
f0=7・360−21・60=1260
f1=7・1080−21・120=5040
f2=7・1140−21・80+35・24=7140
f3=7・480−21・20+35・36+35・6=4410
f4=7・62−21・1+35・14+35・6+21・2=1155
f5=7・1−21・0+35・1+35・1+21・1+7・1=105
f6=7・0−21・0+35・0+35・0+21・0+7・0+1・1=1
===================================