■新種の対称性多面体構造(その2)
400年ぶりに新種の「対称性多面体」構造が発見されたらしいが,その記事を見て新種?と思った人は少なくないはずである.新鮮味にかける理由はその図がフラーレン族にそっくりであるからであろう.
===================================
【1】フラーレン
ダイヤモンドとグラファイト(鉛筆の芯)に次ぐ炭素第3の形として「フラーレン」があげられる.フラーレンは1970年に大澤映二氏(当時京都大学)が存在を予言していた分子である.フラーレンの中でも60個の炭素原子が球殻状に結合したC60はサッカーボール(切頂20面体)にそっくりで,12個の五角形と20個の六角形からなる網目状のカゴ構造を形成している.
それは炭素原子の結合にかかるストレスが均等に分散しているため他に類を見ないほど安定性が高く化学者たちを興奮させずにはおかなかった.内部に金属イオン(荷電粒子)を閉じこめられることがわかると,世界中の研究者がこぞってこの物質の応用とその可能性に目を向けるようになった.超伝導体,潤滑剤,新薬,電池,触媒等々・・・.現在,フラーレンは炭素原子が中空らせん状に並んだカーボンナノチューブとともにナノテク新素材の代表選手と知られている.
1985年に,クロト,スモーリー,カール(Kroto,Smalley,Curl)がグラファイトにレーザーを当ててできた欠片をマススペクトルにかけたところ分子量が720(C60)と840(C70)という値が得られその存在が確認された.彼らはネイチャー誌に論文を書いてサッカーボールの画を載せた.(その後,数mg〜数百mgのフラーレンが得られる製法が開発され,NMRで間違いなくサッカーボールの形であることが証明された.)
彼らの論文はサッカーボールの形を推定しただけであるが,結局この3人がノーベル化学賞をもらって,大澤映二氏の名前は世界に広く知られることはなく随筆で止まってしまった.日本人にとっては残念なストーリーであるが,大澤映二氏は有機合成のエキスパート,現在でも精力的に人造・人工ダイヤの研究を行っておられる(現・ナノ炭素研究所).
その後,サッカーボール型のC60だけでなく、ラグビーボール型のC70,金属を内部に取り込んだC80などが次々に発見され,これら一群の球状炭素分子はフラーレンと総称される.
フラーレンはダイヤモンドに次ぐくらい硬く,セシウムやルビジウムなどのアルカリ金属を加えると超伝導をおこすという化学的性質をもつ.切頂20面体は頂点が60あり,どの頂点からも3本の手がでている.したがってC60では30本の二重結合(12500のケクレ構造)が描ける.また,異性体は1812種類もあり,そのうちで12個の五角形がすべて離れているものが1つだけあり,それがサッカーボール型のC60である.この形は最も安定であるが,C60,C70以外にも正五角形12枚,正六角形は20枚〜100枚以上の0次元ダイヤモンドが知られている.
===================================
(Q)五角形と六角形からなる多面体には五角形が常に12個ある.
(A)オイラーの多面体定理で示される制限からいえることとして,
v−e+f=2,2e≧3f,2e≧3v
を組み合わせると,
2v+2f=2e+4≧3f+4 → f≦2v−4
2v+2f=2e+4≧3v+4 → v≦2f−4
また,別の組合せ方をすると,
3v+3f=3e+6≦2e+3f → 3f−e≧6
3v+3f=3e+6≧2e+3v → 3v−e≧6
n本の辺をもつfn枚の面とn本の辺が交わるvn個の頂点をもつ凸多面体について,
F=f3+f4+f5+・・・
2E=3f3+4f4+5f5+・・・
6F−2E≧12
に代入すると
3f3+2f4+f5−f7−2f8−3f9−・・・≧12
地図のように2つの辺に囲まれた領域まで許すことにすると,この数え上げ公式は
4f2+3f3+2f4+f5−f7−2f8−3f9−・・・=12
となり,係数が1ずつ小さくなり,それが0となるf6は式中に現れない.
ここで,
(1)f2=f3=f4=0だとすると,少なくとも12個のf5がなければならないことになる
(2)多面体の面がすべてf5とf6であるならば,f5=12(切頂二十面体)
(3)多面体の面がすべてf4とf6であるならば,f4=6(切頂八面体)
(4)多面体の面がすべてf4,f6,f8であるならば,f4=f8+6(斜方切頂立方八面体)
もちろん,この結果はトポロジーの定理に基づくものであり,したがって,面が曲面(凸面,凹面,S字状の湾曲した曲面など)であっても成り立つ.
===================================