■単純リー環を使った面数数え上げ(その144)

 初期値

  正四面体:√2/12

  正八面体:√2/3

  正20面体:5τ^2/6

  正12面体:τ^4√5/2

  正5胞体:√5/96

  正16胞体:1/6

  正24胞体:2

  正600胞体:25τ^3/4

  正120胞体:15τ^8√5/2

 月に,中心Pn(a1,・・・,an)と切頂切稜面の距離を求める.

===================================

  xj/aj=yj,y0=1,yn=0(xn=0)

とおく.

 切頂切稜面はPkPnに垂直で,点

  Q=(x1,・・・,xn)=(a1y1,・・・,anyn)

を通る.

PnP0=(−a1,−a2,・・・,−an)

PnP1=(0,−a2,−a3,・・・,−an)

PnPn-1=(0,・・・,0,−an)

 ファセットを定めている不等式は,

  a・x=c

で与えられる.一般に,超平面a・x=cと点x0の距離は

  |a・x0−c|/‖a‖

とくに,原点からファセットまでの距離は|c|/‖a‖となる.

 PnP0に垂直なn次元超平面が点Qを通るのだが,原点をPnに移した方が紛らわしくないので

  a=(−a1,−a2,・・・,−an)

  q=(x1−a1,x2−a2,x3−a3,・・・,xn−an)

とすると,この超平面をa・(x−q)=0,a・x=a・q=cで表すと

  c0=−(a1x1+・・・+anxn)+(a1^2+・・・+an^2)

  c0=−(a1^2y1+・・・+an^2yn)+(a1^2+・・・+an^2)

  h0=|c0|/‖d0‖,‖d0‖=(a1^2+・・・+an^2)^1/2

 PnP1に垂直なn次元超平面では

  a=(0,−a2,・・・,−an)

  c1=−(a2x2+・・・+anxn)+(a2^2+・・・+an^2)

  c1=−(a2^2y2+・・・+an^2yn)+(a2^2+・・・+an^2)

  h1=|c1|/‖d1‖,‖d1‖=(a2^2+・・・+an^2)^1/2

 PnPn-1に垂直なn次元超平面では

  a=(0,・・・,0,−an)

  cn-1=−anxn+an^2=−an^2yn+an^2

  hn-1=|cn-1|/‖dn-1‖,‖dn-1‖=(an^2)^1/2

  an^2yn=0

 辺の長さを1に規格化する.辺の長さは2L.したがって,

  Hk=hk/2L

===================================