■πの級数公式(その36)
[2]パーシバル,ベラード(1997年)
π=1/2^6Σ(−1)^n/2^10n(2^5/(4n+1)−1/(4n+3)+2^8/(10n+1)−2^6/(10n+3)−2^2/(10n+5)−2^2/(10n+7)+1/(10n+9))
の導出を試みたい.
===================================
0<t<1のとき,
1/(1+t^20)=Σt^20n=1−t^20+t^40−・・・
t^k-1/(1+t^20)=t^k-1Σt^20n=t^k-1(1−t^20+t^40−・・・)
また, 上式を0から1/√2まで積分する
Ik=∫(0,1/√2)t^k-1/(1+t^20)dt
=∫(0,1/√2)Σ(−1)^nt^k+20n-1dt
=Σ∫(0,1/√2)(−1)^nt^k+20n-1dt
=Σ(−1)^nt^k+20n/(k+20n)
=1/2^k/2Σ(−1)^n/2^10n・1/(20n+k)
S(a,b)=Σ(−1)^n/2^10n・1/(an+b)
とおくと,この公式は
1/2^6Σ(−1)^n/2^10n(2^5/(4n+1)−1/(4n+3)+2^8/(10n+1)−2^6/(10n+3)−2^2/(10n+5)−2^2/(10n+7)+1/(10n+9))
=2^-15S(20,5)−2^-65S(20,15)+2^3S(20,2)−2S(20,6)−2^-3S(20,10)−2^-3S(20,14)+2^-5S(20,18)
=∫(0,1/√2)(10√2t^4−10√2t^14+16t−16t^5−4t^9−16t^13+16t^17)/(1+t^20)dt
この不定積分も結構面倒な形になる.次回の宿題としたい.
===================================