■単純リー環を使った面数数え上げ(その22)
パスカルの三角形に似た漸化式,たとえば
fj^(n)=fj^(n-1)+fj-1^(n-1)
は成立しないだろうか?
===================================
【1】Anのボロノイ細胞の要素数
fk^(n)=2(2^k+1−1)(n+1,k+2)
fk^(n-1)=2(2^k+1−1)(n,k+2)
fk-1^(n-1)=2(2^k−1)(n,k+1)
(n,k+2)+(n,k+1)=(n+1,k+2)
fk^(n)=2(2^k+1−1)(n+1,k+2)
=2(2^k+1−1){(n,k+2)+(n,k+1)}
=2(2^k+1−1)(n,k+2)+2(2^k+1−1)(n,k+1)
2(2^k+1−1)=4(2^k−1)+2
fk^(n)=2(2^k+1−1)(n+1,k+2)
=fk^(n-1)+2fk-1^(n-1)+2(n,k+1)
===================================
【2】Cnのボロノイ細胞の要素数
fk^(n)=2^k+1(n,k+1)+2^k+2(n−k−1)(n,k+1)
=2^k+1(2n−2k−1)(n,k+1)
fk^(n-1)=2^k+1(2n−2k−3)(n−1,k+1)
fk-1^(n-1)=2^k(2n−2k−1)(n−1,k)
(n−1,k+1)+(n−1,k)=(n,k+1)
fk^(n)=2^k+1(2n−2k−1)(n,k+1)
=2^k+1(2n−2k−1){(n−1,k+1)+(n−1,k)}
=2^k+1(2n−2k−1)(n−1,k+1)+2^k+1(2n−2k−1)(n−1,k)
2^k+1(2n−2k−1)=2^k+1(2n−2k−3)+2^k+2
fk^(n)=2^k+1(2n−2k−3)(n−1,k+1)+2^k+2(n−1,k+1)+2^k+1(2n−2k−1)(n−1,k)
=fk^(n-1)+2^k+2(n−1,k+1)+2fk-1^(n-1)
===================================
【3】まとめ
どちらも,余り実用的ではないことがわかる.
===================================